![]() |
![]() |
![]() |
![]() |
Прогнозирование наличия субклинического каротидного атеросклероза у пациентов с избыточным весом и ожирением при помощи модели машинного обучения |
|
МЕНЮ Главная страница Поиск Регистрация на сайте Помощь проекту Архив новостей ТЕМЫ Новости ИИ Голосовой помощник Разработка ИИГородские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Искусственный интеллект Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Психология ИИ Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Творчество ИИ Техническое зрение Чат-боты Авторизация |
2022-08-26 01:35 ![]() Прогнозирование наличия субклинического каротидного атеросклероза у пациентов с избыточным весом и ожирением при помощи модели машинного обучения Аннотация Цель. Разработать модель прогнозирования наличия субклинического каротидного атеросклероза (СКА) с целью уточнения сердечно-сосудистого риска (ССР) при помощи методов машинного обучения у пациентов с избыточным весом и ожирением без артериальной гипертензии, сахарного диабета и/или сердечно-сосудистых заболеваний (ССЗ). Материал и методы. Использована база обезличенных данных (БД) Webiomed (2,9 млн пациентов). Критерии включения: возраст ?18 лет, индекс массы тела ?25 кг/м2, наличие результатов выполненного ультразвукового исследования брахиоцефальных артерий (БЦА). Исключались из анализа пациенты с артериальной гипертензией, сахарным диабетом и/или ССЗ. Отобраны данные о 5750 пациентах, из которых атеросклеротические бляшки БЦА выявлены у 385 человек. Окончательный набор данных (НД) содержал сведения о 447 пациентах, у 197 (44,1%) из них был выявлен СКА. Количественные и категориальные признаки для обучения модели взяты с заполненностью в БД ?40%, число окончательных признаков для машинного обучения составило 28. При создании модели использовались 3 алгоритма Random Forest, AdaBoostClassifier, KNeighborsClassifier и библиотека Scikit-learn. Для улучшения работоспособности модели применялась функция заполнения пропущенных значений. Целевыми параметрами модели были заданы предсказательная прогнозная способность (accuracy) не ниже 75%, площадь под ROC-кривой не <0,75. Результаты. Полученный НД был разделен на тренировочную и тестовую части в соотношении 80:20. В зависимости от примененных алгоритмов обученная модель характеризуется предсказательной способностью 75-97%, чувствительностью 77-92%, специфичностью 80-98%, площадью под ROC-кривой 0,88-0,97. С учетом метрик точности лучшие результаты были получены для модели, обученной алгоритмом Random Forest (95%, 92%, 98% и 0,95, соответственно). Заключение. Разработанная модель может помочь врачу принимать решение о направлении пациента с избыточным весом и ожирением без ССЗ на ультразвуковое исследование БЦА, что способствует более точной стратификации ССР. Внедрение в практику таких алгоритмов риск-стратификации позволит увеличить точность и качество прогнозирования ССР и оптимизировать систему проводимых профилактических мероприятий. Источник: russjcardiol.elpub.ru Комментарии: |
|