![]() |
![]() |
![]() |
![]() |
Геометрия корректирующих кодов |
|
МЕНЮ Главная страница Поиск Регистрация на сайте Помощь проекту Архив новостей ТЕМЫ Новости ИИ Голосовой помощник Разработка ИИГородские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Искусственный интеллект Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Психология ИИ Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Творчество ИИ Техническое зрение Чат-боты Авторизация |
2022-08-31 17:36 Михаил Цфасман При передаче и хранении информация портится (шум в телефонной трубке, ошибки жесткого диска и так далее). Чтобы восстановить исходное сообщение в систему передачи следует ввести избыточность, иными словами, передавать вместо него более длинное закодированное сообщение. Так возникает понятие корректирующего кода (кода, исправляющего ошибки). Математически это приводит к задаче упаковки шаров в конечномерном векторном пространстве над конечным полем. Эта задача, в свою очередь, оказывается в значительной части эквивалентна проблеме расположения точек в проективном пространстве “в наиболее общем положении”. Здесь уже недалеко и до алгебраической геометрии. Конструкцию кодов по алгебраической кривой нетрудно рассказать, когда эта кривая — прямая. Цфасман Михаил Анатольевич — доктор физико-математических наук, профессор. Летняя школа «Современная математика», г. Дубна, 29 июля 2003 г. Источник: vk.com Комментарии: |
|