Meta выложила в открытый доступ систему прямого перевода между 204 языками |
||
МЕНЮ Главная страница Поиск Регистрация на сайте Помощь проекту Архив новостей ТЕМЫ Новости ИИ Голосовой помощник Разработка ИИГородские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Искусственный интеллект Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Психология ИИ Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Творчество ИИ Техническое зрение Чат-боты Авторизация |
2022-07-09 22:14 Компания Meta разработала и выложила в открытый доступ единую систему перевода текстов, работающую с 204 языками. Она переводит с одного языка на другой напрямую, не используя английский или другие промежуточные языки. Статья об алгоритме опубликована на сайте Meta AI, а сама модель — на GitHub. Многие системы машинного перевода используют отдельные модели для языковых пар, например, для перевода с русского на английский. А также английский часто применяют как язык-посредник между парой языков, поскольку на нем есть больше всего текстов, особенно в интернете. Из-за этого, с одной стороны, для обучения моделей-переводчиков доступно больше данных, но с другой — неизбежно увеличивается количество неточностей и ошибок перевода. Но есть и многоязычные и не использующие промежуточный язык модели, которые способны работать сразу с несколькими, а то и с десятком языков. В 2020 году такую систему под названием M2M представили разработчики из Facebook AI (теперь — Meta AI), тогда она поддерживала 100 языков. В начале 2022 года компания анонсировала проект No Language Left Behind (NLLB), в рамках которого она собирается создать универсальную модель машинного перевода, поддерживающую сотни языков и адаптированную для обучения малоресурсным языкам. Теперь исследователи и разработчики из Meta AI вместе с коллегами из Калифорнийского университета в Беркли и Университета Джонса Хопкинса представили многоязычную модель NLLB-200, поддерживающую прямой перевод между 204 языками, а также датасет FLORES-200 с таким же количеством языков. Как и многие большие языковые модели, NLLB-200 обучалась на огромном массиве данных, собранным из интернета. Но для начала разработчики собрали датасет NLLB-Seed, в который включили предложения из важнейших страниц Википедии, переведенные с английского на 39 малоресурсных языков профессиональными переводчиками. Всего в датасет вошло около шести тысяч предложений. Этот набор данных, а также уже существующие датасеты для других языков, позволил начать обучение модели. Затем для сбора большого датасета для малоресурсных языков авторы использовали систему сбора параллельных корпусов LASER (Language-Agnostic SEntence Representations). Она берет исходное предложение на любом поддерживаемом языке и размещает его на общее векторное пространство так, что одинаковые по смыслу предложения на разных языках в нем будут располагаться очень близко, а разные — далеко: Первая версия LASER была представлена в 2019 году, а в новой работе использовалась LASER3, в которой сделано несколько улучшений. В том числе, в ней выделили кодировщики для групп языков, а также заменили архитектуру с LSTM на Transformer. Собрав обширные датасеты для языков, разработчики обучили единую модель NLLB-200. Чтобы оценить ее работу, они собрали еще один датасет — FLORES-200. Принцип его сбора был похож на NLLB-Seed, но он содержит три тысячи предложений на всех 204 языках, так что для оценки перевода доступно более 40 тысяч языковых пар. Проверка на этом датасете, а также на его предыдущей версии, поддерживающей 101 язык, показала, что NLLB-200 опережает предыдущий лучший многоязыковой алгоритм машинного перевода на 44 процента по метрике BLEU, которая показывает, насколько машинный перевод близок к человеческому. Помимо статьи Meta опубликовала саму модель NLLB-200 и собранные датасеты, они доступны на GitHub. Некоторые исследователи идут дальше в избавлении от промежуточных шагов, таких как перевод на английский. В 2019 году разработчики из Google создали систему прямого перевода устной речи: она работает со звуковыми файлами и вообще не использует текстовое представление слов. Григорий Копиев Источник: nplus1.ru Комментарии: |
|