7 фактов о машине Тьюринга

МЕНЮ


Главная страница
Поиск
Регистрация на сайте
Помощь проекту
Архив новостей

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


7 фактов об идее универсальной машины, ее функциях и задачах

В 30-е годы XX века английский математик Алан Тьюринг придумал устройство, которое теперь называют машиной Тьюринга. Идея его была в том, чтобы придумать устройство, абстрактную машину, которая может делать все, что вообще могут делать машины. Он был не единственным в тот момент, другие люди в других терминах тоже определяли похожие вещи, но в гораздо более абстрактных терминах, по крайней мере, в их работах конкретного механизма работы машины не было.

1. Идея хранимой программы

Оказалось, что это одно из самых важных открытий XX века. То, что сейчас в разных устройствах — скажем, в телевизоре и в стиральной машине, — может использоваться одна и та же микросхема процессора, — это воплощение одной из идей Тьюринга. И то, что одна и та же программа может использоваться в самых разных компьютерах, работать с самой разной аппаратурой и выглядеть одинаково, это тоже его идея. Тогда это называлось идеей хранимой программы (программа хранится в памяти и определяет поведение машины), и еще была идея универсальной машины, — есть машина, которая может делать все, что может делать любая другая машина. Если бы не Тьюринг, наверно, это придумал бы кто-то другой, он не был единственным, кто над этим работал, но так или иначе такое абстрактное теоретическое устройство оказалось одним из самых важных изобретений в XX веке.

Машины Тьюринга и рекурсивные функции (сборник переводов)

Успенский В. А. Машина Поста

Верещагин Н.К., Шень А. Вычислимые функции

2. Расшифровка кодов «Энигмы»

Интересно, что потом Тьюринг, когда настали трудные времена, не только занимался теорией, но и практически участвовал в разных важных проектах. Он с коллегами расшифровал коды немецкой армии. Немцы использовали шифровальные машины «Энигма», которые пытались расшифровать сначала польские криптографы, а потом английские — при активном участии Тьюринга, и им это удалось. А после войны Тьюринг уже строил реальную электронную вычислительную машину. Хотя прямой связи с его теоретическими работами не было, но явно это было продолжением той же самой деятельности. Так что хорошая теория — вещь очень практичная, и не надо бояться того, что теоретические работы окажутся бесполезными.

3. Проблема перебора

Сейчас это большая наука, которая называется теория сложности вычислений, в ней открыли много всего интересного, но есть самая главная проблема, которая называется проблема перебора, и которая до сих пор не решена. Ее можно объяснить на таком примере: выпускалась игрушка Eternity — это такая коробочка, в которую уложены плитки, раскрашенные в разные цвета, но они раскрашены так, что видно, какие плитки можно прикладывать друг к другу (там рисунок на краях). Продаются они рассыпанными, и фирма, которая их изготовила, утверждает, что все это можно собрать в одну картинку внутри этой квадратной коробки (там 256 плиток) — то есть изначально это была одна картинка, разрезанная на плитки. По современным представлениям машины такие задачи за обозримое время решать не могут, — никакого способа, кроме как перебирать все варианты (а их очень много) сейчас не известно. Но, с другой стороны, никто этого не может и доказать. Это и называется проблемой перебора — доказать, что такой полный перебор каких-то объектов нельзя заменить никаким более коротким вычислением.

Кормен, Лейзерсон, Ривест, Построение и анализ алгоритмов

Китаев А., Шень А., Вялый М., Классические и квантовые вычисления

4. Вопрос о разложении чисел на множители

В 2000 году был публично объявлен «список проблем следующего тысячелетия», за которые Институт Клея обещает миллион долларов (Перельман решил одну из этих проблем — но миллион не взял). Первая проблема в этом списке — это проблема перебора, и она там заслуженно. Интересно в теории сложности вычислений то, что не только наличие какого-то алгоритма полезно практически, но, как ни странно, часто бывает полезно отсутствие алгоритма. Например, есть такой известный вопрос о разложении чисел на множители. Если число небольшое, то легко проверить, что оно простое — можно проверить все меньшие числа и понять, что там нет делителей. Если число большое, то так просто уже нельзя проверить — но существуют разные алгоритмы, которые позволяют это делать. (Они основаны на малой теореме Ферма и ее усовершенствованиях.) Так или иначе, алгоритмы проверки простоты существуют.

А теперь другая задача: возьмем два больших простых числа и их перемножим, сообщим, что у нас получилось, и спросим, какие это были числа. Это задача разложения на множители, и никто не знает, как это быстро сделать. И то, что этого никто не знает, очень хорошо, потому что благодаря этому существует вся вычислительная криптография, это одно из основных ее предположений. Когда кто-нибудь снимает деньги в банке, или в интернете заходит на сайт с помощью SSL — используются системы криптографии, основанные на том, что быстро разлагать на множители числа нельзя. Если кто-нибудь в какой-то момент обнаружит, что разлагать можно, то, думаю, после этого будет экономический кризис, потому что вся банковская система рухнет, пока люди не заменят это чем-то другим (вообще без использования компьютеров или с какими-то новыми алгоритмами). Так что отсутствие алгоритма может быть полезнее, чем его наличие. К сожалению, никто не может доказать, что алгоритма нет, хотя все подозревают, что это так — не решена ни общая проблема перебора, ни этот частный ее случай (разложение чисел на множители), особенно важный, и про него тоже все думают, но никто ничего не придумал.

5. Принцип случайности

Что такое случайность и существует ли случайность? Когда в каком-нибудь казино играют в рулетку — может ли наука предсказать, что там выпадет, и как нужно играть, чтобы выиграть, или это в принципе невозможно? Федор Михайлович Достоевский твердо верил, что если быть хладнокровным и не волноваться во время игры, то можно выиграть, — он говорил, что, к сожалению, ему не удается быть хладнокровным, и поэтому он все время проигрывал. С другой стороны, теория вероятностей основана на том, что такой системы не существует, что последовательность бросания монеты в какой-нибудь игре, или последовательность выпадения красного и черного в рулетке, случайны и непредсказуемы. Но возникает вопрос, что такое случайность? Как определить, что это значит? Можем ли мы отделить случайное от неслучайного?

Сейчас вы видите две последовательности:

01010101010101010101

10011101000011010010

Вам сказано, что одна из них получена бросанием монеты, а другая как-то иначе. Сможете ли вы определить, какая из них получена каким образом? Я думаю, что сможете, и что более-менее всякий человек, который посмотрит на эту картинку, скажет, что первая последовательность получена не бросанием монеты, а просто чередованием 0 и 1, а вторая вполне может быть получена бросанием монеты. Но спрашивается, в чем разница? Почему вы смотрите на эту картинку и уверены, что первая последовательность не может быть получена бросанием монеты? Почему монета не может выпасть сначала орлом, потом решкой, потом снова орлом… как это объяснить? Можно сказать так: вероятность того, что это случайно произойдет, очень мала, потому что такая последовательность всего одна, а всего последовательностей очень много. Но ведь то же самое можно сказать и про вторую последовательность, появление конкретно этой последовательности имеет ту же самую малую вероятность, что и для первой. Поэтому вопрос — в чем тут разница, чем первая последовательность «лучше» второй (менее случайна, чем вторая)?

6. Игра в карты как математическая задача

Есть другой парадоксальный пример. Представьте себе, как в XIX веке (это написано у Лотмана в его «Беседах о русской культуре») играли в карты. В отличие от нынешней ситуации, когда карты тасуют, тогда карты продавались уже перетасованными заранее. Поэтому дворяне, которые играли в серьезные игры, каждый раз брали новую колоду и играли с ней. После этого она выбрасывалась и поступала, как пишет Лотман, в распоряжение слуг, которые играли в своего «подкидного дурака». Так вот, представим себе, что есть фабрика, которая выпускает такие перетасованные колоды, и есть машина, которая печатает карты, а есть, которая их тасует — эта машина их как-то внутри себя тасует, потом выкладывает, запаковывает, и они поступают в продажу. Теперь представим себе, что на этой фабрике есть, как говорили в советское время, «отдел технического контроля», который должен проверять, хорошо ли они перетасованы. Время от времени он из пачки сделанных колод достает одну колоду, распаковывает и смотрит, хорошо ли она перетасована. С одной стороны, он должен что-то контролировать, то есть если он никогда никакие колоды не будет браковать как негодные, то зачем он вообще нужен? А с другой стороны, непонятно, что он может контролировать, потому что вся идея того, что карты хорошо перетасованы, состоит в том, что все варианты, все возможные последовательности карт в колоде имеют совершенно одинаковую вероятность. Соответственно, ни одна из них, с точки зрения тасовальной машины, не лучше другой. Почему же мы некоторые колоды (некоторые последовательности карт) бракуем, а некоторые оставляем? Это как-то загадочно. Если, скажем, все карты идут в порядке возрастания их значения, или сначала идут все красные карты, а потом черные — такие комбинации, вроде бы, надо браковать. Но, с другой стороны, непонятно, чем они хуже других. Одной из попыток ответить на этот вопрос (60-е годы XX века) было понятие сложности, то, что сейчас называется колмогоровская сложность или алгоритмическая сложность.

7. Понятие колмогоровской сложности

Идея эта совсем простая — что первая из последовательностей

01010101010101010101

10011101000011010010

потому выглядит неслучайной, что она проста. «Проста» — значит, что существует очень короткий способ объяснить, как она устроена, сказать, что там нули и единицы чередуются. В нашем примере такая разница, может, не сильно заметна, но если там будет тысяча чередующихся нулей и единиц, то ясно, что короче это объяснить словами, чем выписывать всю последовательность. А для настоящей случайной монеты (как считается в рамках этого объяснения случайности) — никакого способа описать последовательность более коротким способом, чем показав просто все нули и единицы, как они есть, не существует. Можно сказать, что, если мы начнем «сжимать» последовательности каким-то архиватором, то вторая последовательность не сожмется, а первая сожмется.

В этом и состоит основная идея Колмогорова и его коллег, которые придумали, что сложность последовательности — это длина кратчайшей программы, которая такую последовательность может напечатать, а случайные последовательности отличаются от неслучайных тем, что нельзя их напечатать никакой программой, которая короче, чем сама последовательность. Теперь целая наука на эту тему возникла, она называется алгоритмическая теория информации, алгоритмическая случайность, но, конечно, многие вопросы там еще не ясны. Не ясен вопрос о том, что можно сделать с ограничением на сложность вычислений. Возможно, что последовательность на самом деле неслучайна и имеет какое-то короткое описание, но мы его просто не знаем и не можем найти — или проблема может быть не в том, что мы его не можем найти, а в том, что для того, чтобы восстановить последовательность по этому описанию, нужно очень много времени. Вот это такая активно развивающаяся и, к сожалению, еще не очень развитая область, и там, может быть, что-нибудь интересное в ближайшее время (или не в ближайшее время) откроют.

Верещагин Н.К., Успенский В.А., Шень А., Колмогоровская сложность и алгоритмическая случайность.


Источник: postnauka.ru

Комментарии: