![]() |
![]() |
![]() |
![]() |
Ученые создали цифровой двойник головастика |
|
МЕНЮ Главная страница Поиск Регистрация на сайте Помощь проекту Архив новостей ТЕМЫ Новости ИИ Голосовой помощник Разработка ИИГородские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Искусственный интеллект Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Психология ИИ Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Творчество ИИ Техническое зрение Чат-боты Авторизация |
2022-02-01 15:20 Российско-британским коллективом ученых разработан цифровой двойник головастика, в котором воссозданы как структура и функции нервной системы этого позвоночного организма, так и строение его тела. Детальная биомеханическая 3D-модель, управляемая цифровым мозгом, взаимодействует с виртуальной физической средой, позволяет наблюдать поведение объекта и предоставляет уникальные возможности для нейробиологических исследований.
![]() © Глеб Сегеда К искусственному разуму, не уступающему человеческому и осознающему себя, есть как минимум два основных пути: изобрести его самим или скопировать у природы. Первый путь пока не привел к желанной цели, зато вызвал бурное развитие компьютерных технологий и различных направлений в области искусственного интеллекта, от игры в шахматы и экспертных систем до человекоподобных роботов. Многие разработки прочно вошли в повседневную жизнь людей в виде программного обеспечения различных гаджетов и способны общаться с человеком на естественном языке. Второй путь — исследовать и воспроизвести работу реального биологического мозга, если это окажется принципиально возможным. Кстати, у человека он состоит, по оценкам, примерно из 86 миллиардов нейронов. В качестве основной цели наиболее сложного и амбициозного проекта в этой области, Human Brain Project (проект «Мозг человека»), стартовавшего в 2013 году, планировалось за десять лет оцифровать и смоделировать на клеточном уровне мозг человека, а в качестве тренировочной задачи и промежуточного результата сделать то же самое для мозга крысы (200 миллионов нейронов). Однако поставленная научная проблема оказалось значительно сложнее, чем предполагалось, и к настоящему времени в виде модели функционирует лишь малая часть мозга, поэтому весьма затруднительно определить, правильно ли она работает. Еще один международный проект, OpenWorm, начатый в 2011 году, был направлен на выяснение того, возможно ли в принципе воссоздать структуру и функции нервной системы целого живого существа настолько хорошо, чтобы виртуальный организм вел себя как настоящий. В качестве объекта моделирования был выбран один из наиболее простых многоклеточных — микроскопический червь Caenorhabditis elegans, у которого всего 302 нейрона. Значительный вклад в проект OpenWorm внесла научно-исследовательская группа под руководством доктора физико-математических наук Андрея Юрьевича Пальянова из Института систем информатики им. А. П. Ершова СО РАН, начавшего работать над этой задачей еще в 2009 году. Упомянутые проекты соответствуют двум крайним точкам на шкале разума — от простейшего до предельно сложного, человеческого, который пока не удается ни полностью понять, ни смоделировать. Что же является золотой серединой, которая позволит добиться значимых результатов уже в наши дни? В мозге даже самых простых позвоночных организмов — более четырех миллионов нейронов, моделирование которых тоже не представляется такой уж простой задачей. Однако совсем необязательно, чтобы объектом изучения и моделирования был взрослый организм. Весьма удачным выбором представляется головастик Xenopus, которого уже несколько десятков лет изучает профессор зоологии Бристольского университета Алан М. Робертс с коллегами. В мозге взрослой лягушки более 16 миллионов нейронов, а у двухдневного головастика их всего лишь несколько тысяч, но с каждым последующим днем их число растет. Возможности сенсорной системы в первые дни довольно ограничены — в основном это механосенсорика и способность воспринимать освещенность, однако даже на этой стадии развития головастик способен реагировать на внешние воздействия и избегать потенциальных опасностей. Но чтобы смоделировать это, одной лишь нервной системы недостаточно: организму необходимо виртуальное тело и среда обитания с действующими физическими законами. Совместными усилиями группы Алана Робертса и российских ученых — директора Института систем информатики им. А. П. Ершова СО РАН, заведующего лабораторией системной динамики А. Ю. Пальянова и главного научного сотрудника лаборатории нейронных сетей Института математических проблем биологии РАН доктора физико-математических наук Романа Матвеевича Борисюка — эту задачу удалось успешно решить. Для этого Андреем Пальяновым была создана специализированная программная система Sibernetic-VT и на ее основе разработана биомеханическая модель тела головастика, взаимодействующая с виртуальной трехмерной окружающей средой, в данном случае — с водой, в которой он плавает. Это позволяет, с одной стороны, снабжать нервную систему сенсорными сигналами, а с другой — наблюдать результаты ее работы, выражающиеся также в поведении объекта.
Созданная модель головастика детально воспроизводит основные особенности строения его тела: форму, размеры, эластичность и плотность различных тканей организма, структуру мышц и их соединения с нервными клетками, управляющими движениями. Жидкость, окружающая головастика, представлена миллионами частиц, для которых рассчитываются координаты, скорость, плотность и действующие на них силы: вязкости, поверхностного натяжения, давления, гравитации, а также силы, возникающие при столкновениях со статическими и движущимися объектами. Подобные задачи требуют значительных вычислительных ресурсов, которые обеспечиваются посредством параллельных вычислений на графических картах (GPU) — по сути, настольных суперкомпьютерах с более чем 10 тысячами процессоров и производительностью более 30 терафлопс (триллионов операций с числами с плавающей запятой в секунду).
Конечно, головастик лягушки в начальной стадии развития — один из простейших примеров позвоночных. Однако именно такой организм является удачной отправной точкой для последующего усложнения моделей, которые, с одной стороны, будут основаны на уже имеющейся, а с другой — позволят учесть изменения, связанные с развитием организма, включая как его нервную систему, так и биомеханическую модель тела с высоким уровнем детализации. Новая разработка является мощным инструментом для решения задач фундаментальной и вычислительной нейробиологии и открывает широкие перспективы дальнейшего изучения и моделирования этого и других организмов. Статья опубликована в журнале PLOS Computational Biology Источник: sci-dig.ru Комментарии: |
|