Гигантские вирусы

МЕНЮ


Главная страница
Поиск
Регистрация на сайте
Помощь проекту
Архив новостей

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


Гига?нтские ви?русы (англ. Giant viruses) — группа очень крупных вирусов, которые можно рассмотреть под световым микроскопом; по размерам не уступают бактериям, из-за этого сначала были отнесены к грамположительным бактериям. Их геномы чрезвычайно велики и часто содержат гены, кодирующие компоненты синтеза белка, что никогда не наблюдается у остальных вирусов; кроме того, некоторые гены, выявленные у представителей этой группы вирусов, неизвестны ни для каких иных организмов. Большинство гигантских вирусов имеют белковый капсид, характерный для остальных вирусов, однако некоторые гигантские вирусы окружены особым тегументом (белковой оболочкой). Как правило, гигантские вирусы поражают протистов. На некоторых гигантских вирусах паразитируют вирофаги. Считается, что для человека гигантские вирусы безвредны, однако появляется всё больше фактов, свидетельствующих об обратном.

По данным ICTV на 2018 год, признаны два семейства гигантских вирусов — Mimiviridae и Marseilleviridae.

Иногда по отношению к гигантским вирусам используют термин «гирусы»

История изучения

История изучения гигантских вирусов началась в 1992 году в Англии. Изучая причины возникновения вспышки пневмонии, учёные исследовали образцы воды, взятые из воздухоохлаждающей системы. Образцы некоторое время инкубировали вместе с культурой амёб Acanthamoeba polyphaga, чтобы выявить внутриклеточные[en] патогенные микроорганизмы, похожие на бактерий рода Legionella, которые обитают внутри амёб. Исследователи смогли обнаружить неизвестный патоген, который был видим в световой микроскоп и красился по Граму положительно, в связи с чем и был отнесен к бактериям. Однако новооткрытую бактерию никак не удавалось вырастить в чистой культуре без амёб. В течение более чем десяти лет попытки классифицировать новую бактерию не давали результатов. Стандартный способ определения новых видов бактерий и архей основан на размножении с помощью полимеразной цепной реакции (ПЦР) участка генома, кодирующего 16S рРНК, и его последующем секвенировании. Однако получить этот участок генома неизвестной бактерии никак не удавалось, несмотря на использование разнообразных протоколов ПЦР. В 2003 году неизвестный микроорганизм изучила с помощью электронной микроскопии французская исследовательская группа Дидье Рауля. Оказалось, что это не бактерия, а очень крупный вирус с икосаэдрическим капсидом. За свое сходство с микроорганизмами новый вирус получил название «мимивирус» (от англ. mimicking microbes — «похожий на микроорганизмы»). С самого открытия вирусов в конце XIX века было принято считать, что вирусы невозможно рассмотреть с помощью светового микроскопа, поэтому открытие мимивируса противоречило устоявшимся догмам вирусологии. Генов 16S рРНК у мимивируса не было просто потому, что у вирусов не бывает рибосом.

После открытия мимивируса множество исследовательских групп начали инкубировать культуры амёб с различными образцами из окружающей среды, и по прошествии некоторого времени во многих случаях в культуре обнаруживали очень крупные вирусы. Появилось множество усовершенствований первоначального протокола, делающих его всё более и более эффективным. Впоследствии учёные стали выращивать вирусы не только в культурах амёб, но и в культурах других протистов. Одних видов мимивирусов на данный момент известно около сотни. Гигантские вирусы были обнаружены даже в образце сибирской вечной мерзлоты. В последние годы несколько гигантских вирусов удалось обнаружить с помощью метагеномики. В 2008 году был открыт первый вирофаг (Спутник) — вирус, который может размножаться в клетках только в присутствии вируса-хозяина (как правило, гигантского вируса) и мешает его успешному размножению. На данный момент известно более десяти видов вирофагов.

Общая характеристика

Под гигантскими вирусами обычно понимают вирусы с геномом длиннее 200 тысяч пар оснований (п. о.) и вирионами больше 0,2 мкм в диаметре. Кроме того, гигантским вирусам присущ ряд общих генетических и структурных особенностей. Во-первых, их геномы всегда представлены двухцепочечной ДНК и содержат значительную долю генов-сирот — от 31 % у Cedratvirus до 84 % у Pandoravirus salinus. Генами-сиротами называют гены, которые больше не обнаруживаются ни у каких живых организмов (в англоязычных источниках их называют ORFans из-за игры слов: ORF (open reading frame) — открытая рамка считывания, а слово ORFan звучит как orphan — «сирота»). Во-вторых, в их геномах имеются интроны и интеины (участки белковых молекул, которые могут сами вырезаться и сращивать концы разрыва), а также мобильные генетические элементы (трансповироны у мимивирусов и MITEs у Pandoravirus salinus).

Самым главным отличием гигантских вирусов от остальных вирусов является то, что в их геномах закодированы молекулы, принимающие участие в трансляции: аминоацил-тРНК-синтетазы, факторы трансляции и тРНК. Таких генов нет только у Pithovirus sibericum. Представители родов Marseillevirus, Pithovirus, Faustovirus, Kauamoebovirus и Cedratvirus не имеют генов, кодирующих тРНК. Гигантских вирусов сближают и некоторые особенности структуры. Например, вирионы мимивируса и Marseillevirus снабжены особыми фибриллами. Для выхода генетического материала в цитоплазму амёбы у гигантских вирусов имеются поры, находящиеся в вершинах капсидов или тегументов. У тех гигантских вирусов, вирионы которых покрыты настоящим капсидом, в его мажорном белке имеется особый мотив, известный как двойной jelly-roll fold. Он имеется только у белков капсидов вирусов с двухцепочечным геномом и нигде более в живом мире. Такие белки формируют олигомеры по типу черепицы, в конечном итоге собираясь в замкнутую белковую оболочку. У Faustovirus с двуслойным капсидом мотив jelly-roll обнаруживается только у белков верхнего слоя.

Таксономическое положение гигантских вирусов ещё не до конца определено, и многие недавно описанные виды, роды и даже семейства гигантских вирусов ещё не получили официального признания Международным комитетом по таксономии вирусов (англ. International committee on virus taxonomy, ICTV). Пока ICTV признал два семейства гигантских вирусов: Mimiviridae и Marseilleviridae. В 2012 году было предложено объединить гигантских вирусов и NCLDV в новый порядок — Megavirales. В порядок Megavirales хотят включить Mimiviridae, Marseilleviridae, Ascoviridae, Iridoviridae, Phycodnaviridae[en], асфаровирусы и поксвирусы.

Жизненные циклы

Большинство известных на данный момент гигантских вирусов поражает амёбы рода Acanthamoeba. Однако неизвестно, есть ли у них другие хозяева. Эти амёбы питаются самыми разнообразными микроорганизмами: бактериями, дрожжами и другими грибами, вирусами и водорослями, поэтому в их цитоплазме находится много чужеродной ДНК. Вероятно, мозаицизм геномов гигантских вирусов обусловлен интенсивным горизонтальным переносом генов от «соседей по клетке». Некоторые гигантские вирусы описаны у другого вида амёб — V. vermiformis. Ряд далёких родственников мимивирусов заражает морских жгутиконосцев и одноклеточные водоросли. Попытки использовать для выращивания гигантских вирусов клетки, отличные от амёб, пока не увенчались успехом.

Однако имеются некоторые свидетельства, что гигантские вирусы могут обитать не только в амёбах. Например, эксперименты показали, что мимивирусы могут проникать в фагоцитирующие клетки (моноциты и макрофаги) человека и мыши, а у мышей даже описали мимивирусную инфекцию, затронувшую макрофаги. Показано также, что мимивирус может размножаться в одноядерных периферических кровяных клетках человека, стимулируя выделение интерферона I типа[en] и подавляя экспрессию генов, стимулируемых интерфероном, в этих клетках. Кроме того, вирусы рода Marseillevirus могут проникать в иммортализованные человеческие Т-лимфоциты, и их даже удалось обнаружить в макрофагах из лимфоузлов.

Жизненный цикл гигантских вирусов длится от 6 до 24 часов. Как правило, вирусы оказываются в клетке посредством фагоцитоза, однако вирусы рода Marseillevirus могут попадать в цитоплазму при помощи эндоцитоза. Этим гигантские вирусы значительно отличаются от остальных вирусов, которые проникают в клетку после взаимодействия с рецепторами на её поверхности. После попадания вириона в цитоплазму его внутренняя мембрана, залегающая под капсидом, сливается с мембраной везикулы, и содержимое вириона изливается в цитоплазму. После этого начинается формирование вирусных фабрик — особых зон цитоплазмы, где проходят репликация вирусной ДНК и сборка вирусных частиц. Нередко при инфицировании гигантскими вирусами изменяется и морфология ядра. В клетках, заражённых Pandoravirus или Mollivirus, наблюдаются впячивания ядерной оболочки, а в случае Mollivirus вирусные фабрики даже попадают в ядро. По сути, вирусная фабрика становится функциональным ядром клетки, заражённой вирусом (вироклетки).

Сборка вирионов у гигантских вирусов происходит по-разному. В случае мимивирусов образование внутренней мембраны, сборка капсида, упаковка ДНК и сборка фибрилл происходят последовательно и сопровождаются перемещением вирионов из центра вирусной фабрики к её краям. У Pandoravirus и Mollivirus сборка оболочки и внутреннего содержимого вириона происходят одновременно. Выход вирионов гигантских вирусов сопровождается лизисом клетки амёбы, и только вирионы Mollivirus покидают клетку посредством экзоцитоза.

Судя по наличию в геномах гигантских вирусов генов, кодирующих белки транскрипции и трансляции, в плане репликации они в той или иной мере независимы от клетки-хозяина. Впрочем, Pandoravirus, Mollivirus и один из Marseilleviridae лишены белков, связанных с транскрипцией, поэтому для их репликации всё-таки необходимо ядро амёбы. В случае одного представителя Marseilleviridae транскрипция начинается в вирусной фабрике, но, по-видимому, за счёт привлечения транскрипционного аппарата клетки-хозяина.

Положение в системе живого мира

Одной из самых необычных черт, отделяющих гигантские вирусы от прочих вирусов, является наличие генов, продукты которых задействованы в трансляции. У Tupanvirus имеется даже полный комплект белков и РНК, необходимых для трансляции, кроме компонентов рибосом. Французский микробиолог Дидье Рауль (впервые изучивший мимивирус) высказал предположение, что гигантские вирусы возникли как результат эволюционной редукции древней клетки и представляют собой четвёртый домен жизни, наряду с археями, бактериями и эукариотами. Возможно, что во время возникновения гигантских вирусов на Земле обитали несколько независимо возникших линий клеточных организмов, из которых до наших дней дожила одна, а гигантские вирусы могут быть потомками одной из вымерших линий.

Однако в строгом смысле слова гигантские вирусы не могут являться доменом, поскольку разделение клеточных организмов на три домена было осуществлено путём сравнения генов рРНК, которых у гигантских вирусов нет. Поэтому в 2013 году Дидье Рауль предложил отказаться от системы трёх доменов и перейти к системе четырёх TRUC — аббревиатура от Things Resisting Uncompleted Classification (с англ. — «сущности, не поддающиеся незавершённой классификации»). Таким образом всю земную жизнь можно подразделить на четыре TRUC — эукариоты, бактерии, археи и гигантские вирусы. При этом остальные вирусы по-прежнему остаются вне системы живого мира. Выделение гигантских вирусов в отдельную ветвь жизни скептически встретил американский биолог Евгений Кунин, который считает, что обособление гигантских вирусов связано с ошибками реконструкции филогении, а большое число генов, общих с клеточными организмами, есть результат горизонтального переноса.

Гигантские вирусы являются микроорганизмами, так как микроорганизмы, по определению, — это организмы, различимые в световой микроскоп, что в полной мере относится к гигантским вирусам. Гигантские вирусы и происхождение эукариот

Тот факт, что вирусная фабрика гигантских вирусов, по сути, является ядром заражённой клетки (вироклетки), наводит на мысль, что эволюция гигантских вирусов и эволюция эукариот могут быть тесно связаны. Сходство вирусной фабрики и клеточного ядра отнюдь не поверхностно: обе структуры залегают в цитоплазме, и часто вирусные фабрики окружают себя мембранами эндоплазматического ретикулума, которые служат источником мембран для вирионов. У многих NCLDVs вирусные фабрики собираются вблизи центра организации микротрубочек, который задействован в делении ядра. С помощью атомно-силовой микроскопии было показано, что вирусные фабрики также образуются при слиянии везикул, произошедших от впячивания ядерной оболочки. Наконец, Mollivirus и отчасти Pandoravirus используют в качестве вирусной фабрики само ядро, а в роли источника для внутренних мембран вирионов — ядерные мембраны.

Можно предположить, что клеточное ядро произошло от вирусной фабрики древнего NCLDV, размножавшегося в протоэукариотической клетке. После этого вирусный геном слился с геномом протоэукариотической клетки и утратил способность к формированию вирионов, навеки став частью эукариотического генома.

Предлагался и другой сценарий, согласно которому гигантские вирусы, наоборот, произошли от ядра древней эукариотической клетки. Можно предположить, что клеточное ядро стало вирусной фабрикой, после того как в нём появились гены, необходимые для формирования вирионов. Впрочем, неясно, каким образом в вирион могла упаковаться целая хромосома.

Согласно третьей гипотезе, клеточное ядро появилось в качестве защитной структуры в результате взаимодействия протоэукариотической клетки с вирусом. Ядро давало возможность обезопасить репликацию и транскрипцию генома клетки от действия вируса, однако в ходе эволюции большинство вирусов научилось преодолевать эту преграду.

Взаимодействие с человеком

Судя по всему, гигантские вирусы распространены в природе очень широко: их удалось обнаружить в пробах морской и пресной вод, а также в образцах почв, собранных по всему миру. Их амёбы-хозяева также распространены очень широко и часто обитают рядом с человеком. Некоторые гигантские вирусы, а именно мимивирусы, удалось выделить из различных животных — устриц, пиявок, мартышек и коров. Marseillevirus выделили из двукрылых насекомых, а фаустовирус однажды был найден в организме мокреца.

Гигантские вирусы неоднократно обнаруживали в биологических материалах, взятых от людей. Они были выявлены в кале и крови здоровых людей, соскобах верхних дыхательных путей больных пневмонией и даже в жидкости для контактных линз, использовавшихся пациентами с кератитом. В 2013 году Marseillevirus обнаружили в крови и лимфоузлах одиннадцатимесячного ребёнка, страдавшего от аденита. Гигантские вирусы часто выявляют в метагеномных данных, связанных с человеком. Так, последовательности, вероятно, принадлежащие мимивирусам, обнаружены в человеческом кале и копролитах, слюне, слизистой вагины. Последовательности, относящиеся к вирофагам, найдены в желудочно-кишечном тракте. Pandoravirus, Pithovirus и Faustovirus были выявлены в плазме крови пациентов, страдающих от разных патологий печени.

Мимивирусы могут проникать в человеческие и мышиные фагоциты. В течение 30 часов после попадания мимивируса в мышиный макрофаг количество вирусной ДНК в клетке значительно увеличивается, а экстракт из заражённых макрофагов приводит к лизису амёб. Также было обнаружено, что мимивирус может размножаться в одноядерных клетках периферической крови человека и подавлять в этих клетках экспрессию генов, стимулированных интерфероном. Через 21 день после заражения Marseillevirus иммортализованных человеческих Т-лимфоцитов в них удалось выявить не только вирусную ДНК, но и целые вирионы. Таким образом, гигантские вирусы могут успешно размножаться и вне амёб.

Мимивирус был обнаружен случайно при исследовании причин вспышки пневмонии. В плазме крови пациентов с пневмонией мимивирусы обнаруживают в существенно б?льшем количестве, чем у здоровых людей. У пациентов, заразившихся пневмонией уже в больнице, в крови выявляли многочисленные антитела против мимивируса. При этом независимые исследования показали, что в больницах мимивирусы присутствуют в гораздо б?льшем количестве, чем в обычных помещениях. Был описан один случай заболевшего пневмонией лаборанта, который много работал с мимивирусом голыми руками. В его крови обнаружили антитела к 23 белкам мимивируса, из которых 4 были уникальны для мимивируса. Похожий случай произошёл в 1968 году с лаборантом, не соблюдавшим правила техники безопасности при работе с вирусом Эпштейна — Барр, который в итоге заболел инфекционным мононуклеозом. Как стало известно впоследствии, инфекционный мононуклеоз вызывается именно вирусом Эпштейна — Барр. У двух пациентов, вернувшихся во Францию из поездки в Лаос и страдавших от астении, лихорадки, миалгии и тошноты, в крови выявили антитела к вирофагу Спутник, который паразитирует на мимивирусах.

Таким образом, на данный момент однозначно записать гигантские вирусы в список человеческих патогенов ещё рано, однако можно определённо сказать, что они участвуют в патогенезе многих заболеваний человека.

Комментарии: