Физики запутали и измерили два макрообъекта |
||
МЕНЮ Главная страница Поиск Регистрация на сайте Помощь проекту Архив новостей ТЕМЫ Новости ИИ Голосовой помощник Разработка ИИГородские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Искусственный интеллект Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Психология ИИ Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Творчество ИИ Техническое зрение Чат-боты Авторизация |
2021-05-09 07:52 Двум разным группам ученых удалось экспериментально продемонстрировать квантовые явления в макроскопических механических системах. Одна из них показала, как можно сгенерировать квантовое запутанное состояние и подтвердить его наличие прямым экспериментом; а вторая научилась избегать стандартный квантовый предел в измерениях аналогичной системы. Первая и вторая работы опубликованы в журнале Science. Наличие приставки «квантовый» в любом термине зачастую отсылает к каким-нибудь очень маленьким, микроскопическим объектам — атомам, фотонам, экситонам. На их основе можно демонстрировать эффекты, которые предсказывает и описывает квантовая механика, и создавать сенсоры и схемы для вычислений или коммуникаций. На самом деле, макроскопические объекты тоже проявляют квантовые свойства, но значительно слабее, чем классические — только тщательные эксперименты могут их выявить. Именно такие эксперименты провели научные группы из Национального института стандартов и технологий и университета Аалто под руководством Джона Тойфеля (John D. Teufel) и Мики Силланпяя (Mika A. Sillanp??), соответственно. Первая экспериментально продемонстрировала и привела доказательства квантовой запутанности макроскопических объектов (вибрирующих мембран), а вторая исследовала обратное воздействие в квантово-механических измерениях аналогичной системы и нашла способы его избежать. Обе работы несмотря на разные направления исследования использовали одну и ту же физическую систему — круглую сверхпроводящую алюминиевую мембрану диаметром 10 микрометров и массой 100 пикограмм, которая служит одной из пластин конденсатора. Конденсатор в свою очередь встроен в электрическую цепь и изменение напряжения в цепи приводит к регистрируемым механическим колебаниям пластины. Обе группы использовали схему с двумя чувствительными конденсаторами для того, чтобы следить за возникающими квантовыми корреляциями между ними. Другой полностью квантовый феномен — о разрушении состояния системы измерением — исследовала группа Силланпяя. В основе этого эффекта лежит принцип неопределенности Гейзенберга: невозможно с любой заданной точностью измерить и положение объекта и его импульс, потому что точное измерение одной из этих величин приводит к неизбежному изменению другой. В случае постоянного отслеживания координаты, точность измерений определяется стандартным квантовым пределом. Поэтому авторы измеряли силу, действующую на мембрану — такое измерение стандартный квантовый предел не ограничивает. Кроме того, избежать влияния измерения на систему авторам позволило эффективное кодирование одного механического осциллятора с помощью двух физических. В таком случае возникает неопределенность в коллективных степенях свободы (например, при измерении среднего координаты двух осцилляторов), но не в индивидуальных. Помимо экспериментального доказательства запутанности и возможности измерения с заданной точностью макроскопических объектов, работы обеих групп могут применяться для создания квантовых вентилей в вычислениях с непрерывными переменными, создания эффективных измерений или для преобразования информации между разными физическим платформами. Вопросы неразрушающих измерений и генерации запутанности физики исследуют и в рамках других платформ с микрообъектами: российские физики использовали квантовую метрологию для высокоточных измерений, исследователи из Австралии и Японии провели неразрушающее измерение кубита на дефекте, а группе физиков из Китая и США удалось запутать охлажденный атом и молекулу. Оксана Борзенкова Источник: nplus1.ru Комментарии: |
|