Месяц Инженьюити: что из себя представляет марсианский вертолёт и чем займется в ближайшее время?

МЕНЮ


Искусственный интеллект
Поиск
Регистрация на сайте
Помощь проекту
Архив новостей

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


2021-04-03 10:39

роботы новости

То, что Инженьюити оказался на Марсе, — историческое событие. Если он полетит, на что мы все здесь надеемся, то это будет первый полет на другой планете созданного руками человека «вертолета». Речь не о реактивной тяге, не о парении и не о падении — а именно об управляемом атмосферном полёте.

Инженьюити, что ты такое?

При взгляде на аппарат возникает ассоциация с коптерами — винты, корпус, вот это все. Выглядит не совсем привычно, но, в целом, ничего супернеобычного. Однако, когда узнаешь подробности, то смотришь на марсолет уже немного иначе. В целом, все объясняется фразой «это первый аппарат, предназначенный для полета на другой планете».

Он больше, чем кажется. Длина его винтов, вращающихся в противоположные стороны — 1,2 метра. На Земле его вес составляет 1,8 кг. На Марсе наш летун весит меньше — около 0,68 кг. Это помогает аппарату подняться вверх даже в разреженной атмосфере.

Один из его создателей так описал Инженьюити: «Это летательный аппарат, который одновременно является космическим аппаратом». Сложность была не только в том, чтобы адаптировать марсолет к полету в разреженной атмосфере другой планеты, но и в том, чтобы он выдержал взлет с Земли, полет в космическом пространстве в экстремальных условиях, посадку на Марс и потом — распаковку и взлет уже на Марсе.

На Красной планете летун должен снабжать себя энергией сам. Начальный заряд (и обогрев) ему дал ровер, но теперь летательному аппарату придется обеспечивать себя энергией самостоятельно. Этому способствуют солнечные панели, которые размещены на лопастях.

Что касается «начинки», то здесь нет ничего сверхъестественного — всего лишь литий-ионные аккумуляторы и материнская плата, которая вполне могла бы обеспечивать работу средней руки смартфона 2-3 летней давности. Относительная простота конструкции — плюс для марсолета, поскольку меньше шансов на то, что что-то выйдет из строя.

Сложного научного оборудования тоже нет, ведь главная задача системы — доказать, что полеты на Марсе вообще возможны. Аппаратное обеспечение обеспечивает высокую производительность, которая нужна марсолету. Дело в том, что для нормального полета необходима работа контура управления с частотой 500 циклов в секунду, плюс анализ изображения с частотой 30 кадров в секунду.

SoC Snapdragon 801 (четыре ядра, 2.26 GHz, 2 ГБ ОЗУ, 32 ГБ Flash) отвечает за работу базового системного окружения на базе Linux. Именно оно выполняет высокоуровневые операции, включая:

– Визуальную навигацию на основе анализа изображений с камеры

– Управление данными

– Обработку команд

– Формирование телеметрии

– Поддержание канала беспроводной связи

Посредством интерфейса UART процессор соединяется с двумя микроконтроллерами, это MCU Texas Instruments TMS570LC43x, ARM Cortex-R5F, 300 MHz, 512 КБ ОЗУ, 4 МБ Flash, UART, SPI, GPIO. Они отвечают за различные функции управления полетом. Кроме того, они же используются для резервирования на случай сбоя, так что информация, которая к ним поступает, дублируется.

В будущем, если все пройдет хорошо, на Красную планету отправятся и другие летательные аппараты — с их помощью можно будет обследовать все гораздо быстрее, чем при помощи колесных роверов. Добраться «наследники» Ingenuity смогут до регионов, куда роверы доехать просто не смогут.

Несмотря на максимальную эффективность конструкции, марсолет несет лишний груз. Но здесь никакой науки, чистая романтика. Дело в том, что после первого своего полета братья Райт распродали части тканевой обшивки планера. И вот один из кусочков этой ткани находится в марсолете.

Откуда он начнет полет?

Команда марсохода уже нашла своеобразный аэродром для летательного аппарата. Его развертывание займет около недели, после чего начнется проверка всех систем. Затем марсолет поднимется вверх на три метра.

На «аэродром» его доставит марсоход, который постепенно движется к кратеру Езеро. Полетная площадка небольшая, ее размер составляет 10*10 метров, она ровная и лишена камней. Зона полетов превосходит по размеру аэродром, ее форма — вытянута. В пяти метрах от нее будет находиться марсоход, который зафиксирует маневры своего «коллеги».

Шесть дней подготовки дрона к полету начнутся как раз после того, как ровер доедет до центра марсианского «аэродрома». В процессе подготовки аккумулятор марсолета зарядится от ровера, и уже после этого произойдет его спуск на грунт Марса. Потом команда проекта проведет проверку всех систем и раскрутку винтов до 2537 оборотов в минуту. Ну а солнечные панели, о которых говорилось выше, будут заряжать аккумулятор марсохода в течение всего периода испытаний.

Подробности о полете

Батареи марсолета не очень емкие, их будет хватать примерно на полторы минуты полета системы. Всего ученые запланировоали пять полетов с максимальной высотой взлета в пять метров. Наверное, полетов может быть и больше — ведь все мы помним, что расчетный срок эксплуатации Оппортьюнити был 90 дней, да?

Разреженный воздух Марса одновременно усложняет взлет, поскольку он, разреженный, но и увеличивает безопасность полета. Нет сильного ветра (то, что есть на Марсе, несравнимо с земными ветрами), а значит, опрокинуть марсолет будет сложно.

Дрон будет связан с ровером по беспроводной сети. Но ее пропускная способность небольшая, так что снимки полета и, тем более, видео, мы получим не очень скоро.

Начало полета

Если все пройдет хорошо, то первый полет состоится после 11 апреля. Именно на апрель рассчитаны те пять полетов, о котрых говорилось выше. И все это время ровер не сможет приступить к своей основной научной миссии — он будет служить в качестве «команды поддержки».

Комментарии: