1 апреля – это не только день юмора, но и день математика.?

МЕНЮ


Главная страница
Поиск
Регистрация на сайте
Помощь проекту
Архив новостей

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


Традиция отмечать “День Математика” 1 апреля возникла с момента зарождения идеи о праздновании этого события. Причем официально этого праздника нет в России. Его празднуют лишь по инициативе студенчества. Во многих ВУЗах России именно в этот день проводят празднования, посвященные математическим факультетам и студентам на них обучающихся.

В честь этого праздника мы хотим рассказать о задачах тысячелетия — семи математических проблемах, определённых Математическим институтом Клэя в 2000 году как «важные классические задачи, решение которых не найдено вот уже в течение многих лет», за решение каждой из которых обещано вознаграждение в 1 млн долларов США.

Возможно, кто-то из вас заинтересуется этими задачами.

Существует историческая параллель между задачами тысячелетия и списком проблем Гильберта 1900 года, оказавшим существенное влияние на развитие математики в XX веке; из 23 проблем Гильберта большинство уже решены, и только одна — гипотеза Римана — вошла в список задач тысячелетия.

По состоянию на начало 2021 года только одна из семи задач тысячелетия (гипотеза Пуанкаре) решена.

Гипотеза Пуанкаре

Считается наиболее известной проблемой топологии. Неформально говоря, она утверждает, что всякий трёхмерный «объект», обладающий некоторыми свойствами трёхмерной сферы (например, каждая петля внутри него должна быть стягиваема), обязан быть сферой с точностью до деформации.

Премия за доказательство гипотезы Пуанкаре присуждена в 2010 году российскому математику Григорию Перельману, опубликовавшему в 2002 году серию работ, из которых следует справедливость гипотезы, но учёный отказался эту премию принять, как ранее отказался от Филдсовской премии.

Нерешённые задачи?

Равенство классов P и NP

Вопрос о равенстве классов сложности P и NP (в русскоязычных источниках также известный как проблема перебора — это одна из центральных открытых проблем теории алгоритмов уже более трёх десятилетий. Если на него будет дан утвердительный ответ, это будет означать, что теоретически возможно решать многие сложные задачи существенно быстрее, чем сейчас.

Отношения между классами P и NP рассматриваются в разделе теории алгоритмов, который называется теорией вычислительной сложности. Она изучает ресурсы, необходимые для решения некоторой задачи. Наиболее общие ресурсы — это время (сколько нужно сделать шагов) и память (сколько памяти потребуется для решения задачи).

Нестрого говоря, проблема равенства P и NP состоит в следующем: если положительный ответ на какой-то вопрос можно довольно быстро проверить (за полиномиальное время), то правда ли, что ответ на этот вопрос можно довольно быстро найти (также за полиномиальное время и используя полиномиальную память)? Другими словами, действительно ли решение задачи проверить не легче, чем его отыскать?

Гипотеза Ходжа

Сформулирована в 1941 году и состоит в том, что для особенно хороших типов пространств, называемых проективными алгебраическими многообразиями, так называемые циклы Ходжа являются комбинациями объектов, имеющих геометрическую интерпретацию, — алгебраических циклов.

В XX веке математики изобрели мощные методы исследования формы сложных объектов. Основная идея состоит в том, чтобы выяснить, до какой степени мы можем аппроксимировать форму данного объекта, склеивая вместе простые тела возрастающей размерности. Этот метод оказался эффективным при описании разнообразных объектов, встречающихся в математике.

Доказать гипотезу Ходжа удалось для некоторых частных случаев. Более общее доказательство пока не найдено, не найдено и доказательство обратного — что гипотеза неверна.

Гипотеза Римана

Гипотеза гласит, что все нетривиальные (то есть имеющие ненулевую мнимую часть) нули дзета-функции Римана имеют действительную часть 1/2. Её доказательство или опровержение будет иметь далеко идущие последствия для теории чисел, особенно в области распределения простых чисел. Гипотеза Римана была восьмой в списке проблем Гильберта. В случае публикации контрпримера к гипотезе Римана учёный совет института Клэя вправе решить, можно ли считать данный контрпример окончательным решением проблемы или же проблема может быть переформулирована в более узкой форме и оставлена открытой.

Теория Янга — Миллса

Задача из области физики элементарных частиц. Требуется доказать, что для любой простой компактной калибровочной группы G квантовая теория Янга — Миллса для пространства R4 (четырёхмерного пространства-времени) существует и имеет ненулевую спектральную щель. Это утверждение соответствует экспериментальным данным и численному моделированию, однако доказать его до сих пор не удалось.

Существование и гладкость решений уравнений Навье — Стокса

Уравнения Навье — Стокса описывают движение вязкой жидкости. Одна из важнейших задач гидродинамики. Численные решения уравнений Навье — Стокса используются во многих практических приложениях и научных работах. Однако в аналитическом виде решения этих уравнений найдены лишь в некоторых частных случаях, поэтому нет полного понимания свойств уравнений Навье — Стокса. В частности, решения уравнений Навье — Стокса часто включают в себя турбулентность, которая остаётся одной из важнейших нерешённых проблем в физике, несмотря на её огромную важность для науки и техники.

Институт Клэя сформулировал два основных варианта постановки задачи о существовании и гладкости решений уравнений Навье — Стокса. В первом варианте уравнения рассматриваются во всём трёхмерном пространстве R3 с некоторыми ограничениями на скорость роста решения на бесконечности. Во втором варианте уравнения рассматриваются на трёхмерном торе T3= R3 / Z3 с периодическими граничными условиями. Для получения премии достаточно доказать или опровергнуть существование и гладкость решения в любом из двух вариантов.

Гипотеза Бёрча — Свиннертон-Дайера

Гипотеза связана с уравнениями эллиптических кривых и множеством их рациональных решений.

В поисках ответа на вопрос, при каких условиях диофантовы уравнения в виде алгебраических уравнений имеют решения в целых и рациональных числах, Брайан Бёрч и Питер Свиннертон-Дайер в начале 1960-х годов предположили, что ранг r эллиптической кривой E над полем K равен порядку нуля дзета-функции Хассе — Вейля L(E, s) в точке s=1.


Источник: vk.com

Комментарии: