Ученые зафиксировали, как перламутр сам собирается в идеальную структуру |
||
МЕНЮ Главная страница Поиск Регистрация на сайте Помощь проекту Архив новостей ТЕМЫ Новости ИИ Голосовой помощник Разработка ИИГородские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Искусственный интеллект Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Психология ИИ Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Творчество ИИ Техническое зрение Чат-боты Авторизация |
2021-01-08 00:01 В новом исследовании, опубликованном в журнале Nature Physics, ученые из B CUBE — Центра молекулярной биоинженерии в Техническом университете в Дрездене и Европейского центра синхротронного излучения (ESRF) в Гренобле впервые описывают, как структурные дефекты при самосборке перламутра притягивают и нейтрализуют друг друга. В конечном итоге это приводит к идеальной периодической структуре. Моллюски строят раковины, чтобы защитить свои мягкие ткани от хищников. Перламутр, который морские организмы используют для строительства, имеет сложную и очень правильную структуру. Это делает его невероятно прочным материалом. В зависимости от вида перламутры могут достигать десятков сантиметров в длину. Независимо от размера каждый перламутр состоит из материалов, отложенных множеством отдельных ячеек в нескольких разных местах одновременно. Как именно эта высокопериодическая и однородная структура возникает из начального беспорядка, было неизвестно до сих пор. Исследователи из группы Злотникова в сотрудничестве с Европейской лабораторией синхротронного излучения (ESRF) в Гренобле очень подробно рассмотрели внутреннюю структуру раннего и зрелого перламутра. Используя голографическую рентгеновскую нанотомографию на основе синхротрона, они смогли зафиксировать рост перламутра с течением времени. «Перламутр — это чрезвычайно тонкая структура с с органическими элементами размером менее 50 нм. Линия луча ID16A на ESRF предоставила нам беспрецедентную возможность визуализировать перламутр в трех измерениях, — объясняет доктор наук Игорь Злотников, руководитель исследовательской группы B CUBE. — Сочетание электронно-плотных и высокопериодических неорганических тромбоцитов с тонкими и тонкими органическими поверхностями делает перламутр сложной структурой для изображения. Криогенная визуализация помогла нам получить необходимую разрешающую способность». Анализ данных был довольно сложной задачей. Исследователи разработали алгоритм сегментации с использованием нейронных сетей и обучили его разделять разные слои перламутра. Таким образом они смогли проследить, что происходит со структурными дефектами по мере роста перламутра. Поведение структурных дефектов в растущем перламутре было неожиданным. Дефекты противоположного направления винта притягивались друг к другу с огромных расстояний. Правосторонние и левосторонние дефекты перемещались по структуре, пока не встретились, и нейтрализовали друг друга. Эти события привели к синхронизации по всей ткани. Со временем это позволило структуре развиться в совершенно правильную и бездефектную . Периодические структуры, похожие на перламутр, создаются многими разными видами животных. Исследователи считают, что недавно открытый механизм мог управлять не только образованием перламутра, но и других биогенных структур. Источник: hightech.fm Комментарии: |
|