Ученые создали внутривенный интерфейс мозг-компьютер |
||
МЕНЮ Главная страница Поиск Регистрация на сайте Помощь проекту Архив новостей ТЕМЫ Новости ИИ Голосовой помощник Разработка ИИГородские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Искусственный интеллект Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Психология ИИ Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Творчество ИИ Техническое зрение Чат-боты Авторизация |
2021-01-18 02:08 В конце прошлого года ученые, опубликовав свою статью в Journal of NeuroInterventional Surgery, представили научному обществу новое устройство для управления компьютером «силой мысли». Тем, кто интересуется нейронауками или Илоном Маском, известно, что с помощью электродов, погруженных прямо в ткани мозга, можно «считывать» его электрическую активность и далее с помощью декодера, расшифровывающего сигнал, подавать ее в нейроинтерфейс – компьютер или нейропротез. Другой вариант – использовать импланты для стимуляции нужных частей мозга. В обоих случаях интерфейс мозг-компьютер представляет собой габаритную и малопривлекательную «шапочку» из проводов, использование которой, например, в повседневной жизни затруднительно. Другое дело – скрытое от посторонних глаз, надежное устройство, позволяющее, например, открывать сообщения или совершать банковские переводы прямо с домашнего компьютера парализованным пациентам. Стало ли это устройство прорывным или просто очередным прототипом – читайте в нашей статье. Схематическое изображение внутривенного нейроинтерфейса. Credit: Thomas J Oxley et al / Journal of NeuroInterventional Surgery 2020 При остром повреждении головного мозга (инсульт или травма) у человека так или иначе остается здоровая нервная ткань, которая за счет нейропластичности «включится» в восстановление потерянных функций. Если потерянная область слишком обширна, или же управление телом невозможно из-за гибели нейронов спинного мозга, то на помощь приходит не реабилитация, а нейроинтерфейс. Группе австралийских ученых под руководством Томаса Оксли (Thomas J Oxley) удалось через венозную систему установить считывающий электродный блок вблизи здорового (на момент исследования) двигательного центра головного мозга (прецентральной извилины) у двух пациентов с боковым амиотрофическим склерозом. Несмотря на то что электроды не вводились вглубь мозговой ткани, а удерживались в просвете вены стентом, они достаточно точно собирали импульсы с двигательной коры, а чрескожный инфракрасный декодер, соединенный с мозговым блоком гибким проводом, преобразовывал сигналы в нажатия клавиш виртуальной мыши в популярной операционной системе. Курсором пациенты могли управлять с помощью «айтрекера», то есть движениями глазных яблок, так как эта функция при данном заболевании не страдает ( в отличие от «синдрома запертого человека»). Нужно понимать, что после имплантации нейроинтерфейса пациентам требовалось время для обучения. Им приходилось в течение шести недель представлять, как парализованная рука кликает по мышке однократно или двухкратно, быстро или медленно. Во время этих заданий устройство запоминало электрическую активность коры, чтобы потом декодер смог правильно преобразовать ее в команду для домашнего компьютера. После тренировок пациенты могли совершать покупки в интернете, пользоваться мобильным банком, печатать текст на виртуальной клавиатуре с помощью «кликов». Важно отметить инертность волокон, помещенных в венозное русло (ни один из них не стал причиной закупорки вен или источником инфекции), надежность (через 12 месяцев у одного из пациентов стент оставался на прежнем месте), быстрота (сопоставима с внутримозговыми электродами) и простота использования устройства дома.
Таким образом, мы видим хорошее функционирование нового внутрисосудистого нейроинтерфейса, но на ограниченной группе пациентов. В будущем большие группы испытуемых помогут разработать более точные протоколы исследований и скорректировать профили безопасности. Текст: Марина Калинкина Motor neuroprosthesis implanted with neurointerventional surgery improves capacity for activities of daily living tasks in severe paralysis: first in-human experienceby Thomas J Oxley , Peter E Yoo, Gil S Rind, Stephen M Ronayne et al. in Journal of NeuroInterventional Surgery. Published October 2020. http://dx.doi.org/10.1136/neurintsurg-2020-016862 Источник: neuronovosti.ru Комментарии: |
|