Кратко о Синергетике |
||
МЕНЮ Главная страница Поиск Регистрация на сайте Помощь проекту Архив новостей ТЕМЫ Новости ИИ Голосовой помощник Разработка ИИГородские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Искусственный интеллект Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Психология ИИ Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Творчество ИИ Техническое зрение Чат-боты Авторизация |
2021-01-11 10:03 Синергетика родом из физических дисциплин - термодинамики, радиофизики. Но ее идеи носят междисциплинарный характер. Они как бы подводят базу под совершающийся в естествознании глобальный эволюционный синтез. Поэтому ученые в синергетике видят одну из важнейших составляющих современной научной картины мира. Равновесная термодинамика занимается процессами взаимопревращения различных видов энергии. Ею установлено, что взаимные превращения тепла и работы неравнозначны. Работа может полно¬стью превратиться в тепло трением или другими способами, а вот тепло полностью превратить в работу принципиально не¬возможно. Знаменитое второе начало термодинамики в формулировке немецкого физика Р. Клаузиуса звучит так: «Теплота не переходит самопроизвольно от холодного тела к более горячему». Закон сохранения и превращения энергии (первое начало термодинамики) в принципе не запрещает такого перехода, лишь бы количество энергии сохранялось в прежнем объеме. Но в реальности такого никогда не происходит. Вот эту-то односторонность, однонаправленность перераспределения энергии в замкнутых системах и подчеркивает второе начало. Для отражения этого процесса в термодинамику было введено новое понятие - энтропия. Под энтропией стали понимать меру беспорядка системы. Поэтому более точная формулировка второго начала термодинамики приняла такой вид: «При самопроизвольных процессах в системах, имеющих постоянную энергию, энтропия всегда возрастает». Физический смысл возрастания энтропии сводится к тому, что состоящая из некоторого множества частиц изолированная (с постоянной энергией) система стремится перейти в состоя¬ние с наименьшей упорядоченностью движения частиц. Это — наиболее простое состояние системы, или состояние термоди¬намического равновесия, при котором движение частиц хаотично. Максимальная энтропия означает полное термодинамическое равновесие, что эквивалентно полному хаосу. Общий итог достаточно печален: необратимая направленность процессов преобразования энергии в изолированных системах рано или поздно приведет к превращению всех видов энергии в тепловую, которая рассеется, т.е. в среднем равномерно распределится между всеми элементами системы, что и будет означать термодинамическое равновесие, или полный хаос. Однако живая природа почему-то стремится прочь от термодинамического равновесия и хаоса. Такая явная «нестыковка» законов развития неживой и живой природы по меньшей мере удивляла. Удивление это многократно возросло после замены модели стационарной Вселенной на модель развивающейся Вселенной, в которой ясно просматривалось нарастающее усложнение организации материальных объектов - от элементарных и субэлементарных частиц в первые мгновения после Большого взрыва до наблюдаемых ныне звездных и галактических систем. Ведь если принцип возрастания энтропии столь универсален, как же могли возникнуть такие сложные структуры? Случайным «возмущением» в целом равновесной Вселенной их уже не объяснить. Стало ясно, что для сохранения непротиворечивости общей картины мира необходимо постулировать наличие у материи в целом не только разрушительной, но и созидательной тенденции. Материя способна осуществлять работу и против термодинамического равновесия, самоорганизовываться и самоусложняться. Если с этим процессам сопоставить "стрелы оптимальности" эволюции Материи, то мы должны придти к осознанию того, что стрелы оптимальности могут иметь противоположное направление. Анализ подобных процессов в рамках Единого закона, на страницах сайта, полностью подтверждает справедливость этих слов. Предназначение синергетики, как науки, и об этом явно говорит ее автор, заключается в том, чтобы определить основные принципы, как из хаоса вырастают высокоорганизованные системы. Так, Герман Хакен в предисловии к своей книге "Синергетика", пишет: "Я назвал новую дисциплину синергетикой не только потому, что в ней исследуется совместное действие многих элементов систем, но и потому, что для нахождения общих принципов, управляющих самоорганизацией, необходимо кооперирование многих различных дисциплин". Общий смысл комплекса синергетических идей заключается в следующем : • Процессы разрушения и созидания, деградации и эволюции во Вселенной имеют объективный характер, • Процессы созидания (нарастания сложности и упорядоченности) имеют единый алгоритм, независимо от природы систем, в которых они осуществляются. Новизна синергетического подхода заключается в следующем. Хаос выступает и как разрушитель, и как созидатель. Понятие "хаос" оказалось гораздо более глубоким, чем представлялось ранее. Поэтому наряду с понятием "хаос" появилось определение "беспорядок", как нарушенный порядок. Хаотическое состояние содержит в себе неопределенность - вероятность и случайность, которые описываются при помощи понятий информации и энтропии. Зародышем самоорганизации служит "вероятность" - упорядоченность возникает через флуктуации, устойчивость через неустойчивость. Важная особенность такого определения - переход системы в новое устойчивое состояние неоднозначен. Достигшая критических параметров система из состояния сильной неустойчивости как бы «сваливается» в одно из многих возможных новых для нее устойчивых состояний. В этой точке (ее называют точкой бифуркации) эволюционный путь системы как бы разветвляется, и какая именно ветвь развития будет выбрана - решает случай! Но после того, как «выбор сделан», и система перешла в качественно новое устойчивое состояние - назад возврата нет. Процесс этот необратим. Многие ученые - синергетики хорошо знают смысл слова бифуркация, но немногие догадываются о том, что это слово является ключевым для понимании смысла синергетики. Бифуркация (лат. bis-дважды, furca- виды) -разделение, раздвоение, разветвление чего-либо на два потока, на два направления. Не на три, на четыре, ..., а именно на два!! Это хорошо знакомое всем явление спонтанного перехода в более сложное состояние с позиций статистической механики совершенно необъяснимо. Ведь оно свидетельствует о том, что, например, миллиарды молекул жидкости как по команде начинают вести себя скоординированно, согласованно, хотя до этого пребывали в совершенно хаотическом движении. Создается впечатление, что каждая молекула «знает», что делают все остальные, и желает двигаться в общем строю. (Само слово «синергетика», кстати, как раз и означает «совместное действие».) Классические статистические законы здесь явно не работают, это явление иного порядка. Ведь даже если такая «правильная» и устойчиво «кооперативная» структура и образовалась бы случайно, что почти невероятно, то она тут же распалась бы. Но она не распадается при поддержании соответствующих условий (приток энергии извне), а устойчиво сохраняется. Значит, возникновение таких структур нарастающей сложности - не случайность, а закономерность. Считается, что для того, чтобы в системах шла самоорганизация, должны выполняться следующие необходимые условия и этапы эволюции. а) Система должна быть открытой и находиться достаточно далеко от состояния, соответствующего термодинамическому равновесию. б) Необходимо, чтобы порядок возникал благодаря флуктуациям, которые сначала осуществляют, а затем усиливают его. в) Важнейшим условием является наличие положительной обратной связи. г) Необходимым условием считается и достижение системой некоторых критических размеров, способствующих и усиливающих кооперативное поведение элементов системы. Эти четыре условия характеризуют наиболее важные грани процесса самоорганизации. Пожалуй, главная заслуга синергетика состоит в том, что она убедительно доказала, что линейный характер эволюции сложных систем, к которому привыкла классическая наука, не правило, а, скорее, исключение; развитие большинства таких систем носит нелинейный характер. Этот вывод, видимо, и определит главное направление эволюции синергетики - изучение фазовых переходов систем из одного устойчивого состояния в другое, т.е. изучение трансформации неравновесных систем из одного состояния в другое. В 60-70 годы происходит подлинный прорыв в понимании процессов самоорганизации в самых разных явлениях природы и техники. Перечислим некоторые из них: теория генерации лазера Г.Б. Басова, А.М. Прохорова, Ч. Таунса; колебательные химические реакции Б.П. Белоусова и А.М. Жаботинского —- основа биоритмов живого; теория диссипативных структур И. Пригожина; теория турбулентности А.Н. Колмогорова и Ю.Л. Климонтовича. Неравновесные структуры плазмы в термоядерном синтезе изучались Б.Б. Кадомцевым А.А. Самарским, С.П. Курдюмовым. Теория активных сред и биофизические приложения самоорганизации исследовались А.С. Давыдовым, Г.Р. Иваницким, И.М. Гельфандом, Молчановым А.М., Д.С. Чернавским. В 1963 году происходит эпохальное открытие динамического хаоса, сначала в задачах прогноза погоды (Э. Лоренц), затем теоретически, начинается изучение странных аттракторов в работах Д. Рюэля, Ф. Такенса, Л.П. Шильникова. Для странных аттракторов характерна неустойчивость решения по начальным данным, знаменитый "эффект бабочки", взмах крыльев которой может радикально изменить дальний прогноз погоды —- образ динамического хаоса. Создаются униваерсальная теория катастроф (скачкообразных изменений состояний систем) Р.Тома и В.И. Арнольда и развиваются ее приложения в психологии и социологии; теория автопоэзиса живых систем У. Матураны и Ф. Вареллы. Круг этих методов и подходов в изучении сложных систем Герман Хакен и назовет в 1970 году синергетикой (теорией коллективного, кооперативного, комплексного поведения систем), предварительно эффективно применив их в теории генерации лазера. В 80-90 годы продолжается изучение динамического хаоса и проблемы сложности. В связи с созданием новых поколений мощных ЭВМ, развиваются фрактальная геометрия (Б.Мандельброт), геометрия самоподобных объектов (типа облака, кроны дерева, береговая линия), которая описывает структуры динамического хаоса и позволяет эффективно сжимать информацию при распознавании и хранении образов. Были обнаружены универсальные сценарии перехода к хаосу М. Фейгенбаума, Ив. Помо. В 1990 году открыт феномен самоорганизованной критичности. Его можно исследовать, рассматривая кучу песка (П. Бак). Сходящие лавинки воспроизводят распределения Парето по величинам событий для биржевых кризисов, землетрясений, аварий сложных технических комплексов и т.д. Сегодня синергетика быстро интегрируется в область гуманитарных наук, возникли направления социосинергетики и эволюционной экономики, применяют ее психологи и педагоги, развиваются приложения в лингвистике, истории и искусствознании, реализуется проект создания синергетической антропологии. Тем не менее, такой рост вширь иногда сводится лишь к декларациям о намерениях, поскольку междисциплинарность в современной науке предполагает взаимосогласованное использование образов, представлений методов и моделей дисциплин как естественнонаучного и технического, так и социогуманитарного профиля. Это в свою очередь, предполагает, помимо всего прочего, существование единой научной картины мира. В то же время сейчас такой общенаучной (междисциплинарной) единой картины мира (в смысле самосогласованной целостности), строго говоря, нет. Существуют ее отдельные фрагменты, именуемые специальными картинами мира, дисциплинарными онтологиями такие, например, как: физическая, биологическая, космологическая картины мира, репрезентирующие предметы каждой отдельной науки. Синергетика и пытается навести мосты между этими картинами, создать единое поле междисциплинарной коммуникации, сформировать принципы новой картины мира. Функционирование синергетики в культуре естественно рассматривать в трех аспектах ее взаимодействия с обществом: • синергетика как картина мира; • синергетика как методология; • синергетика как наука. В рамках освоения картины мира происходит первое, а иногда и единственное, знакомство с понятиями синергетики и ее возможностями. Как правило, происходит на обыденном языке, на слабо формализованном, зачастую метафорическом, популярном уровне. Здесь обращение идет к наглядности, к здравому смыслу, аналогии, эстетическому чувству и безусловному доверию авторитету творцов новой парадигмы. Именно так укореняется наука в обыденном сознании в популярных изданиях, именно так выглядят вводные главы книг Германа Хакена и Ильи Пригожина. Для пытливого ума это всегда радость встречи с новым взглядом на мир окружающих нас вещей и событий. Принципиально важно, что новое понимание реальности скрыто не столько в мирах физики элементарных частиц или глубинах Вселенной, но растворено в повседневности встреч со сложностью нашего мира, изменчивого мира "здесь и сейчас", что вновь наполняет жизнь очарованием тайны, ключи от которой теперь доступны каждому. Именно этим можно объяснить такой интерес к синергетике у широкой аудитории, доступность ее принципов и домохозяйкам и академикам. Кстати, с этим связана и возможность эффективного преподавания синергетики, как школьникам, так и искушенным профессионалам. Для каждого можно найти свой горизонт понимания, формализации и приложений. Кроме того, принципы синергетики справедливы как в естественных, так и в гуманитарных науках и есть надежда, что это дает ключ к решению проблемы двух культур. Согласно И. Пригожину и И. Стенгерс, пафос рождающегося на наших глазах мировидения - это призыв к "новому диалогу человека с природой", понимаемого целостно, эволюционно. В новой картине мира человек должен думать не просто о выживании, а осознать свою роль и ответственность в единстве сотворчества с природой, научиться законам коэволюции с ней. Для этого ему предстоит лучше понять и мир и себя, свой природный и социальный генезис, законы мышления; отрефлектировать, как он понимает, моделирует реальность. Поэтому синергетика это еще и наука о человекоразмерных системах - постнеклассическая наука. Источник: vk.com Комментарии: |
|