Комбинаторное мышление |
||
МЕНЮ Главная страница Поиск Регистрация на сайте Помощь проекту Архив новостей ТЕМЫ Новости ИИ Голосовой помощник Разработка ИИГородские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Искусственный интеллект Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Психология ИИ Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Творчество ИИ Техническое зрение Чат-боты Авторизация |
2021-01-26 17:05 Логическое мышление, творческое мышление, аналитическое мышление – известные всем виды мышления. Однако, есть и такие, услышать о которых можно не часто. К их числу относится комбинаторное мышление, и в этой статье мы хотим поговорить именно о нем: рассмотрим само понятие, побеседуем на тему актуальности его развития и коротко коснемся комбинаторики – раздела математики, изучающего комбинаторные задачи. Что такое комбинаторное мышление Комбинаторным мышлением принято называть способность человека к решению комбинаторных задач. Интересен тот факт, что оно представляет собой как бы переходную форму от образного мышления к абстрактно-логическому, а также наоборот, т.к. оно включает в себя самые разные элементы: мотивационные, операционные, содержательные, абстрактно-логические и образные. Это, кстати, служит одной из причин, почему комбинаторное мышление тесно связано с логикой. Также обращаем ваше внимание на то, что данный тип мышления не может формироваться самостоятельно и для его развития необходимо прибегать к специальным педагогическим методикам. Суть же комбинаторного мышления состоит в том, что при его активизации мозг человека занят поиском и преобразованием каких-либо одних элементов в другие, придавая им новые формы и комбинации. Вот лишь некоторые особенности этого процесса:
Ко всему прочему есть еще и разные типы комбинаторного мышления. Всего их три категории:
Обусловлено это разнообразие тем, что рассматриваемый вид мышления относится к самостоятельной форме интеллектуальной активности. В характеристику категорий мы углубляться не будем (при желании вы можете найти интересующую информацию самостоятельно), а лучше расскажем о том, почему комбинаторное мышление нужно развивать. О развитии комбинаторного мышления Актуальность развития комбинаторного мышления может быть рассмотрена с нескольких сторон, однако каждая из них так или иначе связана непосредственно с логикой:
Исходя из этого, переоценить важность развития комбинаторного мышления достаточно сложно, т.к. вместе с ним развивается и логика, и образное восприятие, и способность к поиску причинно-следственных связей, и мышление в целом и т.д. Комбинаторика В жизни каждого из нас время от времени бывают такие задачи, решить которые можно несколькими способами. И чтобы сделать это правильно, очень важно учесть все эти способы. Именно по этой причине нужно уметь перебирать все возможные варианты и устанавливать их количество. Как раз такие задачи и носят название комбинаторных, а их изучением занимается конкретный раздел математики – комбинаторика. Заметим, что подобного рода задачи волновали людей с древнейших времен. Так, еще в Древнем Китае люди составляли магические квадраты, где конкретные числа по всем совпадениям всегда давали одну и ту же сумму. А древние греки занимались подсчетом числа комбинаций слов разной длины в стихотворных размерах, изучали теорию фигурных чисел, а также исследовали фигуры, которые могут получиться из элементов специальным способом разрезанного квадрата и т.д. Позже комбинаторные задачи стали появляться и в области игр, таких как кости, карты, домино, шахматы, шашки и т.п. Сама комбинаторика возникла в 17 веке и изначально рассматривала комбинаторные задачи, касающиеся азартных игр. По мере их изучения вырабатывались общие методы решения задач и определялись формулы, позволяющие подсчитывать число комбинаций. Также появление комбинаторики тесно связано с теорией вероятности, для решения задач которой изначально было необходимо уметь вести подсчет количества различных комбинаций, подчиненных конкретным условиям. В 18 веке такие задачи изучались Г. Галилеем, Н. Тартальей, Д. Кардано, а позже – математиками П. Фермой, Б. Паскалем и другими. Множество достижений в представленной области принадлежит также Л. Эйлеру. Задачами из области комбинаторики были заинтересованы, кроме всех прочих, математики, составлявшие и разгадывавшие шифры и изучавшие древние письменности. Сегодня же комбинаторика применятся с целью решения огромного количества теоретических и практических задач, где речь идет о возможных исходах, в том числе и благоприятных, для конкретных случаев. Применение она нашла и во всех научно-технических областях, включая биологию (посредством нее, например, исследуется состав ДНК и белков), химию, механику и другие области. Интересно отметить, что с развитием комбинаторики было обнаружено, что, невзирая на визуальное различие вопросов, которые она изучает, большинство из них обладают одним и тем же математическим содержанием, результатом чего становятся задачи на тему множеств и их подмножеств. Со временем ученые определили ряд базовых видов задач, решение которых позволяет изучить многие комбинаторные проблемы. А одной из важнейших областей комбинаторики является теория перечислений – именно при помощи нее возможно определить количество решений разного рода комбинаторных задач. К слову добавим, что важность комбинаторики обусловлена и тем фактом, что с определением объектов и их расположением в каком-либо вообще порядке людям приходится сталкиваться, пожалуй, во всех сферах деятельности человека. И в заключение еще несколько слов о связи комбинаторного мышления и математики. Комбинаторное мышление и математика Особое место решение задач комбинаторного характера занимает, как уже стало ясно, в математике, причем роль этого навыка становится все серьезнее. Причина же состоит в том, что такие задачи обладают огромным потенциалом для развития мышления вообще и для обучения решению проблем в обычной каждодневной жизни. В начальных курсах математики данные задачи решаются в основном методом подбора, а чтобы сделать этот процесс проще нередко применяются графы и таблицы. Кроме того, включение комбинаторных задач в математические курсы сопряжено также и с тем, что повышается развивающая функция математики, ведь их решение предполагает симбиоз алгоритмического и эвристического стилей мышления. Эвристический элемент здесь нужен, чтобы адекватно воспринять задачу, найти ее решение, составить алгоритм перебора или определения компонентов, а алгоритмический элемент – для грамотного выполнения составленного алгоритма. Таким образом, для обучения комбинаторному мышлению требуется не просто задействовать особые педагогические методы, но и обращаться к соответствующим образом подготовленным специалистам. Источник: m.vk.com Комментарии: |
|