Найден способ уверенно распознавать дипфейки? |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2020-12-06 19:00 Нейросети сегодня умеют создавать настолько правдоподобные изображения, что их порой сложно отличить от реальных фотографий. Такие изображения, называемые дипфейками, могут быть любопытными и забавными, но лишь до тех пор, пока все понимают, что это подделка. Когда же кто-то пытается выдавать дипфейки за чистую монету, они превращаются в большую проблему. С их помощью можно нанести ущерб репутации, повлиять на общественное мнение и даже сфабриковать подложные доказательства для суда. Поэтому, как только появились нейросети, умеющие производить дипфейки, сразу началась разработка алгоритмов, которые были бы способны их распознавать. Задача осложняется тем, что для создания дипфейков обычно используются генеративно-состязательные нейросети (Generative Adversarial Networks, GAN). Их работа изначально основана на «состязании» двух нейронных сетей, одна из которых генерирует картинки, а другая старается определить, настоящие они или сгенерированные. Обе эти сети обучены на больших массивах реальных фотографий. Если изображение выглядит неправдоподобно, вторая нейросеть заставляет первую изменять его до тех пор, пока оно не перестанет идентифицироваться как подделка. Получается, что дипфейки изначально создаются такими, что существующие системы распознавания не могут уверенно отличить их от реальных фотографий. На сайте thispersondoesnotexist.com вы сами можете оценить, насколько правдоподобно выглядят сгенерированные нейросетью несуществующие люди. Алгоритмы по распознаванию дипфейков обычно используют свёрточные нейронные сети, которые призваны выделять характерные признаки. Эти нейросети обучают на самих изображениях в явном виде, что требует много времени и ресурсов. Однако коллектив исследователей из Института информационной безопасности им. Хорста Гёрца при Рурском университете в Бохуме предложил более простое и изящное решение этой проблемы. Учёные решили подвергнуть изображения частотному анализу, использовав давно известный метод дискретного косинусного преобразования. Он применяется, например, в алгоритме сжатия JPEG. Изображение в этом случае рассматривается как результат наложения гармонических колебаний различной частоты, взятых с разными коэффициентами. Эти коэффициенты можно визуализировать в виде прямоугольной тепловой карты, верхний левый угол которой соответствует низкочастотным областям исходного изображения, а нижний правый — высокочастотным. Реальные фотографии состоят в основном из низкочастотных колебаний (первая картинка). Если же явные всплески наблюдаются в высокочастотной области, это может свидетельствовать о том, что изображение — подделка. А если они ещё и формируют регулярную структуру — как говорится, и к гадалке не ходи (вторая картинка). Чтобы проверить эффективность предложенного подхода, учёные составили тестовую выборку из 10 000 изображений, куда входили сгенерированные нейросетью StyleGAN портреты несуществующих людей и реальные фотографии из набора Flickr-Faces-HQ (FFHQ). Всё это можно найти на сайте whichfaceisreal.com. Успех был абсолютным: алгоритм распознал все дипфейки до единого! Более того — выяснилось, что он с большой долей вероятности позволяет определить, с помощью какой именно нейросети было сгенерировано изображение. Дело в том, что каждая из них имеет свой «отпечаток» в частотном диапазоне. На третьей картинке — сравнение спектрограммы реальных фотографий из набора Stanford dogs (слева) и изображений, сгенерированных нейросетями различных архитектур, которые были обучены на этом наборе. Откуда же берутся эти всплески в высокочастотных областях? Оказывается, что они неразрывно связаны с самим принципом действия генеративно-состязательных нейросетей. В основе их работы лежит процесс так называемого апсемплинга, то есть отображения данных из пространства низкой размерности в пространство высокой размерности. Например, сеть StyleGAN, создавшая все дипфейки с людьми из этого поста, формирует в пространстве данных изображение размером 1024 ? 1024 пикселя (более миллиона значений) на основе вектора из скрытого пространства, имеющего размерность всего-навсего 100. Если же попытаться обойтись без апсемплинга, то объём вычислений, необходимых для генерации дипфейков, вырастет до астрономических величин. В данной статье учёные подробно рассмотрели лишь один набор данных и одну архитектуру нейросети. Однако они утверждают, что предложенный метод универсален и будет работать не только для всех существующих сетей типа GAN, но и для тех, что появятся в будущем. Так ли это, станет ясно уже довольно скоро. Источник: proceedings.icml.cc Комментарии: |
|