ИСТИННЫЕ СИНАПСЫ И ЛОЖНЫЕ ВОСПОМИНАНИЯ

МЕНЮ


Искусственный интеллект
Поиск
Регистрация на сайте
Помощь проекту

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


Сюжет незабываемого фильма «Вечное сияние чистого разума» (2004) французского режиссера Мишеля Гондри построен вокруг компании, которая специализируется на выборочном стирании воспоминаний.

И правда, разве плохо, если бы мы могли каким-то образом удалять воспоминания, отравляющие нашу жизнь, — например, вызывающие посттравматический стресс у участников боевых действий? Или, наоборот, рисовать иллюзорные полотна ложных воспоминаний?

Нейробиологи так хорошо изучили нейронные сети, задействованные в памяти, что идея Мишеля Гондри, на самом деле, не такая уж фантастическая. Обе манипуляции уже были проведены на мышах командой другого лауреата Нобелевской премии, профессора Судзуми Тонегавы.

Сначала ученые запускали мышь в комнату, где она получала несколько слабых ударов электрическим током. Позже животное старательно избегало этого помещения; это означало, что данный неприятный эпизод был запечатлен в его памяти. Коллегам Тонегавы удалось даже визуализировать этот процесс. Используя сложный двухфотонный микроскоп, они смогли отследить, какие нейроны были активны в каждый момент времени. Как выяснилось, комната А, которая ассоциировалась с ударами током, и комната Б, где не происходило ничего плохого, вызывали активность в разных группах нейронов гиппокампа.

Затем исследователи решили проверить, можно ли изменить эти эпизодические воспоминания. Пока мышь физически находилась в комнате А, ученые снова подвергли ее воздействию слабых электрических разрядов, но на этот раз искусственно активировали популяцию нейронов, кодирующих комнату Б. Это искусственное обусловливание дало удивительный эффект: позже, когда мышь вернулась в комнату Б, она испугалась и замерла. Плохое воспоминание теперь было связано с комнатой Б, где ничего неприятного не случалось. Иными словами, реактивации значимой группы нейронов было достаточно, чтобы пробудить воспоминание и связать его с новой информацией.

После этого команда Тонегавы превратила плохое воспоминание в хорошее.

Можно ли стереть травматическое воспоминание? Да. Реактивируя нейроны, кодирующие комнату Б, в присутствии особей противоположного пола (беспроигрышный вариант), исследователи успешно стерли ассоциацию с ударами электрическим током. Теперь мыши отнюдь не избегали проклятой комнаты Б — напротив, они принимались лихорадочно исследовать ее, как будто искали половых партнеров.

Другая группа исследователей применила несколько иную стратегию: они активировали исходную группу нейронов и одновременно ослабляли синапсы, которые их связывали. На протяжении нескольких дней мышь не проявляла ни малейших воспоминаний о первоначальной травме.

Следуя той же логике, французский исследователь Карим Бенченан успешно внедрил новое воспоминание в мозг спящей мыши. Всякий раз, когда животное засыпает, нейроны в его гиппокампе самопроизвольно реактивируют воспоминания о предыдущем дне — особенно о местах, где оно побывало.

Решив воспользоваться этим обстоятельством, Бенченан подождал, когда мозг спящей мыши реактивирует нейроны, связанные с определенной локацией в клетке, а затем сделал ей инъекцию дофамина, нейротрансмиттера удовольствия. И — о, чудо! — как только мышь проснулась, она со всех лап побежала к этому месту! Таким образом, изначально нейтральная локация за ночь приобрела совершенно иное значение — столь же притягательное, как сладость Прованса или место, где мы впервые влюбились.

Другие эксперименты на животных позволили ученым имитировать воздействие школьного обучения на мозг. Что происходит, когда обезьяна осваивает буквы, цифры или новый инструмент? Японский исследователь Ацуси Ирики показал: обезьяна может научиться пользоваться граблями и с их помощью доставать пищу, до которой нельзя дотянуться рукой. После нескольких тысяч попыток животное ни в чем не уступало опытному крупье в казино: ему требовалось всего несколько десятых долей секунды, чтобы сгрести угощение одним движением запястья. Обезьяна даже сообразила, как с помощью грабель среднего размера притянуть к себе вторые, более длинные грабли и добраться до пищи, расположенной гораздо дальше от клетки! Данный тип научения — овладение инструментом — вызвал целый каскад изменений в мозге. Прежде всего увеличилось потребление энергии в передней теменной области — зоне, которую люди используют, чтобы контролировать движения рук, писать, хватать предметы, пользоваться молотком или плоскогубцами.

Это сопровождалось экспрессией новых генов, усилением синаптических связей и активным ветвлением дендритных и аксонных деревьев. Все это привело к 23-процентному утолщению коры.

Кардинальным изменениям подверглись целые пучки связей: аксоны нейронов, расположенных на достаточном удалении, на стыке с височной корой выросли на несколько миллиметров и захватили часть передней теменной области, которая ранее не имела контактов с этими клетками.

Изменения, перечисленные выше, — отличная иллюстрация проявлений нейропластичности во времени и пространстве. Повторим основные моменты. Итак, в нашем мозге активируется группа нейронов, кодирующих событие или понятие, которое мы хотим запомнить. Как же сохраняется эта информация? У нас есть синапс, микроскопическая точка контакта между двумя нейронами. Его сила увеличивается, когда два нейрона возбуждаются в короткой последовательности друг за другом — это знаменитое правило Хебба: нейроны, которые срабатывают вместе, связываются друг с другом. Синапс, ставший сильнее, подобен фабрике, которая увеличивает свою производительность: он набирает больше нейротранcмиттеров на пресинаптической стороне и больше рецепторных молекул на постсинаптической стороне. Разумеется, чтобы вместить их все, он увеличивается в размерах.

По мере того как нейрон учится, меняется и его форма. В том месте дендрита, где располагается синапс, образуется грибовидная структура под названием «дендритный шипик». При необходимости появляется второй синапс, дублирующий первый. Другие синапсы, которые образует тот же нейрон, тоже усиливаются.

Таким образом, при пролонгированном научении меняется сама анатомия мозга. Благодаря последним достижениям в микроскопии — в частности, двухфотонным микроскопам, основанным на лазерах и квантовой физике, — можно непосредственно увидеть, как, подобно деревьям весной, растут синаптические и аксонные терминали. В совокупности дендритные и аксональные изменения могут быть весьма существенными — порядка нескольких миллиметров. В этом случае их можно обнаружить с помощью МРТ. Овладение навыками игры на музыкальном инструменте, чтения, жонглирования, даже вождения такси в большом городе приводит к заметному утолщению коры и усилению связей, соединяющих ее различные области: «пропускная способность» магистралей мозга тем выше, чем чаще мы ими пользуемся.

Синапсы — это лучший пример научения, но отнюдь не единственный механизм изменений в мозге. Когда мы учимся, формирование новых синапсов заставляет нейроны отращивать дополнительные ветви как на аксонах, так и на дендритах. На приличном удалении от синапса аксоны окружают себя специальной оболочкой — миелином. Миелин похож на клейкую ленту, которая используется для изоляции электрических проводов. Чем больше используется аксон, тем больше слоев содержит эта оболочка и тем выше изоляция, что позволяет передавать информацию с большей скоростью.

Помимо нейронов, в игре под названием «научение» участвуют и другие клетки. В процессе научения трансформируется вся окружающая среда, включая глиальные клетки, которые питают и лечат нейроны.

Меняется даже сеть вен и артерий, снабжающих их кислородом, глюкозой и питательными веществами. В конце концов модификациям подвергаются не только сами связи, но и поддерживающая их инфраструктура.

Некоторые исследователи не согласны с тем, что синапсы суть необходимые акторы всякого научения. Последние данные показывают, что клетки

Пуркинье — особые нейроны, локализованные в мозжечке, — могут запоминать временные интервалы и что синапсы не играют в этом процессе никакой роли: данное явление, по-видимому, носит сугубо внутриклеточный характер120. Вполне возможно, что измерение времени, на котором специализируется мозжечок, сохраняется в памяти с помощью другого механизма, приобретенного нами в ходе эволюции и не основанного на синапсах.

Предполагается, что каждый мозжечковый нейрон абсолютно самостоятельно может хранить несколько временных интервалов — вероятно, благодаря стабильным химическим изменениям в своей ДНК.

В рамках другого направления исследований ученые пытаются выяснить, какую роль играют синаптические и прочие изменения в наиболее сложных типах научения, на которые только способен человеческий мозг.

Прежде всего речь идет, разумеется, о научении, основанном на «языке мышления» и быстрой рекомбинации существующих понятий. Как мы уже видели, традиционные модели искусственных нейронных сетей обеспечивают более или менее правдоподобное объяснение того, как миллионы изменяющихся синапсов позволяют нам распознавать числа, объекты или лица. Однако до сих пор не существует по-настоящему удовлетворительной модели того, каким именно образом синаптические изменения содействуют овладению речью или усвоению математических понятий. Переход от синапсов к символическим правилам, которые мы изучаем на уроках математики, до сих пор остается загадкой.

Посему я призываю всех мыслить открыто: пока мы еще очень далеки от полного понимания биологических кодов, с помощью которых наш мозг хранит воспоминания.

Из книги "Как мы учимся. Почему мозг учится лучше, чем любая машина… пока" Станисласа Деан


Источник: book24.ru

Комментарии: