Iq-тесты для плазмодия

МЕНЮ


Искусственный интеллект
Поиск
Регистрация на сайте
Помощь проекту

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


Physarum polycephalum — вид слизевиков семейства Физаровые.

Родовое название Physarum образовано от др.-греч.  — «пузырь». Имя вида лат. polycephalum означает «многоголовый.

Вегетативная стадия Physarum polycephalum представляет собой плазмодий (одну большую клетку со множеством ядер). Миксомицет обладает ярко-жёлтым цветом, может ползать со скоростью до 4 сантиметров в час.

Несмотря на то, что у Physarum polycephalum нет мозга, он способен к решению задач. Организм способен к обучению: учёным удалось научить его игнорировать вредные для него вещества, и при повторных экспериментах год спустя он смог продемонстрировать те же навыки.

Physarum polycephalum способен обмениваться информацией: в ходе эксперимента ученые «научили» 2000 миксомицетов не опасаться соли, а затем сформировали пары из «опытных» «блобов» и «неопытных». Исследователи установили, что «блобы» смогли передать этот навык «неопытным».

Плазмодий — это масса протоплазмы, которая морфологически дифференцирована на две зоны: внешнюю, относительно стационарную гелеподобную эктоплазму, и внутреннюю, жидкую эндоплазму, текущую в тяжах. Диаметры цилиндрических тяжей (жилок) разнятся в диапазоне 40–500 мкм. Каким же образом передвигается плазмодий? Оставаясь одной клеткой, миксомицет применяет амебоидный способ передвижения.

Далее отрыки из статьи на biomolecula.ru

«Не так давно в СМИ поднялся шум о существовании «интеллекта у плесени», и множество статей засы?пало просторы интернета. Какие же исследования дали основу для таких заключений журналистов?

В начале 2000-х годов японский ученый Тосиюки Накагаки из Университета Хоккайдо вместе с коллегами провел следующий эксперимент: отдельные кусочки плазмодия были помещены в небольшой лабиринт; спустя некоторое время они начали разрастаться, сливаясь друг с другом и заполняя весь лабиринт. Затем на входе и выходе лабиринта поместили агаровые блоки, содержащие измельченные овсяные хлопья, и всего через четыре часа плазмодий начал оптимизировать свою сеть тяжей. Тяжи в тупиковых ходах и на более длинных путях постепенно истончались и исчезали. Еще через четыре часа миксомицет сформировал утолщенный тяж по наикратчайшему пути между источниками еды.

Стоит отметить, что сначала плазмодий нашел еду, затем, прогнав питательные вещества по телу, начал формироваться наиболее оптимально, соединяя оба источника питания. При этом плазмодий мог выбирать более короткое расстояние из различающихся на 22%, но небольшую разницу в 2% он уже не учитывал. Был сделан логичный вывод, что плазмодий, повышая шансы на выживание, выбирает самый эффективный способ получения питательных веществ.

А еще прозвучало утверждение, которое, собственно, и произвело мировой резонанс: «...одноклеточные создания могут проявлять примитивный интеллект».

В 2009 году Накагаки и его коллеги поместили плазмодий... в Токио, и спустя 23 часа монстр захватил все крупные города Японии! К счастью для местных жителей, плазмодий распространился всего лишь на карте, концентрируясь вдоль основных транспортных маршрутов (дело в том, что на месте 36 крупных городов размещались овсяные хлопья). Как видно на фотографиях эксперимента (рис. 5 и видео под ним), плазмодий сначала распространился по всей площади, находя источники питания (как и в исследовании 2000 года), а затем сформировал основную структуру. Таким образом получилась почти точная копия железнодорожной сети, соединяющей города Японии. Расчеты показали, что в местах несовпадений слизевик разработал более выгодный, чем воплощенный людьми, маршрут.»

Короткое видео https://youtu.be/BZUQQmcR5-g о том, как плазмодий сформировал единую сеть тяжей между хлопьями.

«Хотя задача соединения точек не кажется сложной, поиск наиболее оптимального и экономного способа их соединения требует сложных математических вычислений. Вызвав массу сомнений, эксперимент быстро «разошелся» по другим лабораториям. Так, например, были получены модели сетей шоссейных дорог на картах Англии и Испании, в некоторых случаях включающие расширения и изменения, сделанные в последнее время из-за неоптимального изначального планирования. Исследование наглядно продемонстрировало способность слизевика планировать транспортные маршруты не хуже профессиональных инженеров. Естественно, миксомицет не способен учитывать ландшафтные особенности, поэтому дает картину только для идеальных условий. Однако это не умаляет перспектив применения Physarum polycephalum для поиска оптимальных решений как в инженерных, так и в биологических системах. Возможно, в будущем с их помощью можно будет строить инфраструктуру с улучшенной архитектурой, более эффективные и быстрые информационные сети, линии электропередач, а также применять их в исследовании самоорганизующихся сетей (массивов датчиков, беспроводных ячеистых систем).

Группа молодого исследователя Кристофера Рида (Chris Reid) из Сиднейского университета в своем эксперименте обнаружила, что плазмодий при движении оставляет за собой след из слизи, и в дальнейшем при поиске пищи избегает уже пройденных участков.

Таким образом, слизь как бы управляет «памятью» слизевика, помогая ему находить новые пути. Для подтверждения этого предположения исследователи поместили Physarum polycephalum в U-образную ловушку из сухого ацетата, так что плазмодий не мог двигаться по ней, а только по контуру. Препятствие блокировало путь к двухпроцентному раствору глюкозы. В результате эксперимента 23 из 24 миксомицетных экземпляров смогли обойти ловушку и найти сахар в пределах 120 часов, при этом не возвращаясь на уже пройденные и покрытые слизью участки. Затем поверхность чашки Петри покрыли внутриклеточной слизью, и в этом случае только треть организмов достигла цели в пределах установленного временн?го лимита, причем организмы возвращались на ранее пройденные участки. Исследователи также предположили, что Physarum polycephalum может распознавать слизь, оставленную другими видами миксомицетов.

В данном случае внешняя пространственная память — ответная реакция примитивных организмов на химические вещества, накопленные в окружающей среде, — может быть функциональным предшественником внутренней памяти высших организмов. Найденные простейшие механизмы памяти будут полезны инженерам и программистам, работающим над усовершенствованием системы преодоления препятствий у роботов.

Было показано, что плазмодий каким-то образом умудряется выбирать именно ту пищу, которая соответствует его потребностям. Каким образом он определяет этот баланс, непонятно, однако известно, что он предпочитает пищу с соотношением углеводы:белок, равным 1:2, а углеводной пищей не злоупотребляет.

Позже ученые из уже упомянутого Университета Сиднея продемонстрировали, как Physarum может перебирать варианты и делать наилучший выбор. Эксперимент был направлен на проверку способности плазмодия принимать решение с учетом компромисса «скорость—точность», который свойственен многим высшим животным. Плазмодий должен был выбрать наиболее подходящую пищу в стандартных условиях и в условиях стресса (яркий свет). На выбор были представлены питательные блоки, содержащие овсянку в концентрациях 2, 6 и 10%. Ожидания оправдались: плазмодий в условиях голода всегда выбирал более калорийный блок, однако когда пищу помещали вокруг плазмодия на непродолжительное время (поспешное решение) или же плазмодий подвергался повышенному освещению (стресс), выбор очень часто оказывался неудачным. Важно отметить, что абсолютно такое же поведение свойственно и нам.

Группа японских ученых обнаружила, что Physarum polycephalum обладает своеобразной памятью. При изменении внешних условий скорость перемещения слизевика меняется: например, при пониженной влажности слизевик замедляет движение. Такое поведение плазмодия ученые использовали в исследовании влияния на него периодических неблагоприятных условий.

Миксомицета поместили на узкую полосу в инкубатор с контролируемыми температурой и влажностью. Сначала организм мигрировал вдоль полосы при 26 °С и влажности 90% (благоприятные условия); затем условия окружающей среды на 10 минут меняли на более прохладные (23 °С) и сухие (влажность 60%): это так называемая «сухая стимуляция», которая повторялась последовательно три раза через постоянные интервалы времени (50–60 минут). В ответ на такое воздействие слизевик каждый раз замедлял скорость движения. Когда условия вновь становились благоприятными, плазмодий самостоятельно снижал скорость движения, как бы ожидая воздействия во время, когда должна была повториться «сухая стимуляция». Если воздействие не повторялось, то уже после двух циклов плазмодий «забывал» о стрессе, однако после возобновления стимуляции «память» возвращалась. «Предвидение» стресса и остановка движения без реальной стимуляции у некоторых особей (примерно у 10%) сохранялись до трех раз, а дважды повторялись у 20%.

Исследование сложного поведения примитивных организмов имеет большое значение для понимания общих механизмов поведенческих реакций и их эволюции. Понятие памяти принято связывать с наличием нервной системы и мозга, но, как можно видеть, лишенный мозга организм тоже справляется с задачей запоминания информации.

Исходя из вышеописанных экспериментов, можно ли действительно заключить, что Physarum polycephalum, так сказать, sapiens? Скорее всего, по приведенным стандартам многие биологические системы можно назвать разумными. Поведение слизевика определяется реакцией на окружающую среду — отточенной в ходе эволюции способностью принимать и обрабатывать информацию.»

Амбициозный слизевик завоевывает сферу электротехники

Клаус-Петер Заунер (Klaus-Peter Zauner) из британского Университета Саутгемптона совместно с коллегами из Университета Кобе (Япония) разработал биоробота на основе плазмодия.

Плазмодий находился в кювете в форме звезды с шестью концами и был дистанционно подключен к шестиногому роботу. Принцип действия установки заключался в непереносимости плазмодием яркого света, которого он старается избегать, мигрируя в более комфортные условия. Таким образом, перемещение слизевика, вызванное раздражением от света, проецировалось на конечности робота и приводило его в движение. Естественно, скорость передвижения «плазмобота» была низкой, однако замечателен сам механизм его функционирования, который продемонстрировал возможность управления роботом всего лишь одной клеткой.

А.И. Адамацкий (Andrew Adamatzky, University of the West of England, UK) считает — и с этим трудно не согласиться, — что плазмодий всего лишь подчиняется биологическим, физическим и химическим законам. С помощью электронных датчиков, подключенных к агаровым каплям с миксомицетом, были получены электрические сигналы плазмодия в различных состояниях. Кроме того, по полученным зависимостям напряжения от времени можно было отследить и расшифровать определенные сигналы, связанные с состоянием плазмодия.

Более того, ученые конвертировали эти данные в спектрограммы, сопоставив активность разных электродов со звуками разной частоты, и воспроизвели звуковую запись. Прослушать, о чём поет плазмодий, можно на видео ниже.

Также команда Адамацкого обнаружила мемристивные свойства плазмодия, пропуская через тяж ток различного напряжения. Такие же свойства ранее были обнаружены у человеческих кожи и крови. Мемристор — это резистор с памятью, сопротивление которого в цепи меняется под действием приложенного напряжения, и, таким образом, мемристор в каждый момент времени обладает своего рода памятью о том, что происходило в электрической цепи прежде. Теоретически по ёмкости и скорости этот элемент превосходит современную флеш-память и позволяет даже заменить Random Access Memory (RAM) — один из видов памяти компьютера, — и всё это без расходования энергии.

Пока срок работы такого плазмодиального мемристора составляет 3-5 дней; однако разработчики надеются, что, если удастся продлить это время, на основе P. polycephalum можно будет создать биокомпьютер, электронные схемы которого оставят классическую электронную промышленность далеко позади.

В одной из работ ученые успешно смоделировали поведение плазмодия с помощью мемристоров в LC-контуре, основываясь на том, что способность мемристора «запоминать» свойственна и слизевику. Хотя исследование всё же не объясняет явления, происходящие в плазмодии, электронная схема с мемристором прекрасно моделирует его поведение. Положительное напряжение в схеме соответствовало благоприятным условиям, отрицательное — неблагоприятным. За скорость движения плазмодия отвечало напряжение на мемристоре. При подаче отрицательного напряжения колебания в контуре быстро затухают. Однако если несколько раз повторять действие, и при этом период прилагаемого напряжения будет похож на период контура, напряжение на мемристоре в определенный момент запомнит неблагоприятные события, и при напоминании отрицательным импульсом будет замедлять колебания. Как мы видим, аналогичный японскому принцип обучения привел к такому же результату.

Многие слышали о так называемых lab-on-a-chip — «лабораториях на чипе». Physarum и здесь нашел применение. Полезными вновь оказались хемотаксические способности организма. Раскладывая вокруг плазмодия овсяные хлопья и соль, исследователи вырастили из него логические элементы «исключающее ИЛИ» и «ни X, ни Y». В перспективе с помощью данной сети можно будет программировать лабочипы.

Большие надежды

Пока что при исследовании плазмодия Physarum polycephalum появляется больше вопросов, чем ответов. Но это только доказывает, что впереди нас ожидают еще более удивительные открытия в самых различных сферах — от эволюционной биологии до робототехники. В последнее время проводится множество конференций, посвященных персонально Physarum polycephalum, на которых обсуждаются достижения в разгадке тайн этого миксомицета.»


Источник: www.youtube.com

Комментарии: