Парадокс Рассела. Главный парадокс теории множеств, оказавший влияние на всю математику. |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2020-11-13 04:01 Идет 1902 год, немецкий философ, а заодно логик и математик, Фридрих Людвиг Готлоб Фреге терпеливо трудится над вторым томом "Основных законов арифметики". И вот, когда основная работа подходит к концу, к нему приходит письмо от другого мастодонта логики - англичанина Бертрана Рассела. Прочитав это письмо, Фреге вносит примечание в своё произведение, которое начинается с таких слов: "Вряд ли с учёным может приключиться что-нибудь худшее, чем если у него из-под ног выбьют почву в тот самый момент, когда он завершит свой труд. Именно в таком положении оказался я, получив письмо от Бертрана Рассела, когда моя работа уже была завершена". Вы уже, наверное, догадались, что речь в этом послании шла о знаменитом парадоксе, который не только стал стимулом для пересмотра аксиоматических основ математики, став началом конца т.н. "наивной теории множеств", но и усилил противоречия, став хорошим аргументом для сторонников нового направления в математике - интуиционизма. Разберемся, в чём суть парадокса. Поехали! Формальный парадокс Рассела Итак, начнем с формального определения, а потом перейдем к "житейским". Назовём множество "обычным" в том случае, если оно не является элементом самого себя. Например, множество овец является "обычным", т.к. само множество не является овцой, а является некой их совокупностью. "Необычным" множеством, в свою очередь, назовем такое множество, которое само является собственным элементом. В качестве примера Рассел приводит множество всех множеств (остановитесь, обдумайте минутку и читайте дальше). Мы, кстати, говорили про это понятие в статье, где я давал определение унарным операциям над множествами. Так вот, дополнение множества там определяется через некий "универсум" - множество всех множеств. Освежите в памяти. Парадокс Рассела возникает тогда, когда начинают рассматривать множество всех обычных множеств, которое получило название "расселовское" и пытаются понять, является ли оно "обычным". Следите за пальцами, есть два пути:
И в первом и во втором случае получается противоречие. Житейские версии парадокса Самый известный вариант, известный еще с античности" - это "парадокс лжеца" : Данное высказывание ложно. Истинно ли это высказывание или нет ? Второй вариант - это "парадокс брадобрея": Пусть в некотором городе живет брадобрей, который бреет всех жителей, которые не бреются сами, и только их. Бреет ли брадобрей самого себя? Третий вариант - это "парадокс каталога": Каталоги - это книги, которые описывают другие книги. Некоторые каталоги могут содержать другие каталоги, а некоторые могут описывать даже себя. Можно ли составить каталог всех каталогов, которые не описывают сами себя? Все эти парадоксы разрешаются похожим образом: в первом не может существовать "расселовского" множества, во втором - такого брадобрея, а в третьем - такого каталога. С другой стороны, мы же в формулировках парадоксов сами определили их, т.е. постулировали их существование. Здесь на сцену вышли те самые интуиционисты, которые утверждают, что любой объект может существовать, если мы предоставили способ его построения. Таким образом, этих парадокса Рассела в интуиционистской математике не существует, что, впрочем, не мешает существовать другим (об этом в другой раз). Что же предприняли математики-конструктивисты ? Придумали новые аксиоматики теории множеств, взамен "наивной", например:
В перечисленных теориях все возможные парадоксы были устранены, казалось, битва закончена. Однако в 1930 году молодой (24 года!) австрийский математик Курт Гёдель нанес такой удар, к которому ни одна из имевшихся аксиоматик не была готова. Но это - уже совсем другая история. О ней расскажу немного позже. Источник: zen.yandex.ru Комментарии: |
|