Механическая деформация превратит алмаз из диэлектрика в полупроводник и обратно |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту Архив новостей ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2020-10-14 10:00 Ученые из России и США разработали теоретическую модель изменения электрической проводимости кристалла алмаза в широком диапазоне без разрушения его структуры. Модель показывает, что регулировать ширину запрещенной зоны алмаза можно с помощью направленной механической деформации сжатия-растяжения. При этом достаточная сила напряжения для таких превращений находится в области упругих деформаций, что позволяет избежать нестабильности фононов и графитизации. Исследование опубликовано в журнале PNAS. Электропроводность материала зависит от ширины его запрещенной зоны — это энергия, которой необходимо обладать электрону, чтобы перейти из валентной зоны в зону проводимости. Алмаз, благодаря своим физико-механическим свойствам — желанный материал для решения множества задач, в том числе в экстремальных условиях. Но алмаз имеет ширину запрещенной зоны 5,6 электронвольт и относится к диэлектрикам. В таком состоянии он малопригоден для повсеместного использования в полупроводниковой технике. Заставить алмаз проводить ток — перспективная задача для разных областей науки. Ширину запрещенной зоны можно менять, легируя материал, изменяя его молекулярную структуру. Чтобы добиться высокой проводимости, необходимо уменьшить ширину запрещенной зоны до нуля, а еще лучше при этом не нарушить кристаллическую решетку алмаза, чтобы он сохранил свои полезные качества. Добавление примесей также способствует усложнению конструкции, увеличивает вероятность возникновения дефектов. Поэтому важно найти наиболее простой и эффективный метод воздействия на ширину запрещенной зоны. Два года назад в Science вышла работа, описывающая наличие относительно большой упругой деформации в алмазе, что позволяет изменять функциональные свойства алмаза, такие как электропроводность, с помощью одного только механического воздействия. Чжэ Ши (Zhe Shi) с коллегами из Массачусетского технологического института при участии ученых из Сколковского института науки и технологий определили оптимальные параметры приложения механического напряжения на кристаллы алмаза, чтобы сделать его проводником без легирования и изменения фазы. Сложность заключалась в том, что существует огромное количество вариантов приложения напряжения: разной силы и направленности. Ученые произвели расчеты методом конечных элементов на основе теории функциональной плотности, а затем применили их для машинного обучения алгоритмов нейронной сети (не уточняется, какой именно) на платформе TensorFlow. Нейросеть перебрала множество комбинаций (не уточняется конкретный состав и размер выборки) механического воздействия, сопоставила их с шириной запрещенной зоны в разных плоскостях и областях кристалла и построила зависимость. Моделирование результатов наглядно показывает, что наноиглы алмаза можно обратимо сжимать и растягивать без разрушения до 10,8 и 9,6 процента деформации соответственно. Этого диапазона достаточно, чтобы менять проводимость алмаза от диэлектрика до проводника. Теоретическая модель может в зависимости от поставленной задачи вычислить необходимые параметры механического воздействия для предсказания любого значения ширины запрещенной зоны от 0 до 5,6 электронвольт. В теории, динамически воздействуя на алмаз, можно регулировать его электропроводность в реальном времени. В том числе, можно сделать алмаз полупроводником с прямым или непрямым переходом, и все это — обратимо, с возможностью вернуть кристалл в состояние покоя. Разработанную модель можно использовать для более подробных исследований и конструирования сложных систем на базе алмаза. Способность управлять электропроводностью материала в реальном времени позволяет использовать алмаз в многокомпонентных материалах вместо нескольких веществ одновременного — возможно, это поможет физикам в разработке квантовых микрочипов. Например, ранее мы писали, как из алмазных квантовых микрочипов ученые собрали 128-кубитный чип. Роман Колесов Источник: nplus1.ru Комментарии: |
|