Механизм наследования, популяционная генетика, микроэволюция. Закон Харди-Вайнберга |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2020-09-15 11:00 В процессе эволюции живых организмов ясно прослеживается тенденция к той или иной форме интеграции, которая проявляется, начиная с молекулярного уровня организации и заканчивается биосферным. Интеграция позволяет осуществлять разделение функций между отдельными элементами системы, что делает саму систему более лабильной, жизнеспособной и экономичной. Один из уровней интеграции, существующий между индивидуумом и видом, представлен популяцией. Популяция — это группа особей одного вида, объединенных общим местом обитания. Она складывается под влиянием условий существования на основе взаимодействия трех факторов: наследственности, изменчивости и отбора. Особи внутри популяции обладают сходной системой приспособлений к условиям среды и из поколения в поколение воспроизводят основные адаптивные признаки. Популяция является основной единицей эволюции. На эту роль популяция вышла благодаря следующим особенностям: Популяция — самовоспроизводящаяся система, способная к длительному существованию во времени и пространстве, в отличие от индивидуума, жизнь которого ограничена узкими временными рамками и который может не оставить потомства. В основе воспроизводства популяции лежит процесс размножения составляющих ее особей. Популяция является полномочным представителем вида, т.к. ее генофонд включает все основные гены видового уровня. В то же время в ней испытываются новые гены и их комбинации, за счет чего происходит обогащение видового генофонда. В популяции в результате скрещиваний осуществляется обмен генетической информацией между особями, который изменяет генотипическую структуру популяции, позволяя ей адекватно реагировать на разнообразные воздействия. Основными характеристиками популяции являются: ее генофонд, численность, ареал и генотипическая структура. Все они динамичны, подвержены временным, иногда очень значительным, колебаниям. Динамические процессы, приводящие к изменению генетической структуры старых и формированию новых популяций, обозначают термином микроэволюция. Исследования в области генетики популяций были начаты в первые годы ХХ в. Основателем этого направления считается датский генетик В. Иогансен, который разработал учение о популяциях и чистых линиях. Изучая наследование количественных признаков в популяциях фасоли, Иогансен пришел к выводу о неэффективности отбора в чистых линиях и эффективности его в популяциях, в основе чего лежит генетическая однородность первых и гетерогенность вторых. Открытие Иогансена, наряду с законами Менделя, способствовало созданию научных основ селекции. Большинство популяций животных и растений складываются на основе свободного скрещивания особей — панмиксии. Это так называемые менделевские, или панмиктические, популяции раздельнополых животных и растений-перекрестников, в которых осуществляется постоянный обмен генетической информацией между ее членами. Иной тип популяций образуют организмы, которым свойственно самооплодотворение или вегетативное размножение. В этом случае обмен генами между особями либо полностью исключен, либо затруднен. Это так называемые закрытые популяции (растения-самоопылители, животные-гермафродиты), которые складываются как группы особей одного вида, имеющие общее происхождение, общий генофонд и общую систему адаптаций. И, наконец, промежуточный тип характерен для популяций растений, в которых самоопыление чередуется с перекрестным, а половое размножение с апомиксисом (факультативные апомикты) или вегетативным размножением. Такие популяции обычно характеризуются сложной генетической структурой. Особое положение в живой природе занимают популяции человека. Действие биологических факторов, изменяющих генетическую структуру популяции, в первую очередь естественного отбора, изменено в результате деятельности самого человека. С помощью достижений науки, культуры, этики и медицины человек вносит существенные коррективы в процесс конструирования популяций, стремясь свести до минимума риск распространения “вредных” генов. Однако существование человеческих популяций подчиняется тем же законам, которые действуют в других популяциях. Основной закон генетики популяций был сформулирован в 1908 г. математиком Дж.Г. Харди в Англии и врачом В. Вайнбергом в Германии, независимо друг от друга, на основе данных, относящихся к популяциям человека. Главный постулат этого закона сводится к тому, что частота гена не изменяется от поколения к поколению, а распределение генотипов в каждом поколении соответствует формуле бинома Ньютона, т.е. определяется возведением в квадрат суммы частот двух аллелей. Рассмотрим процедуру выведения этого закона. Возьмем достаточно большую по численности менделевскую популяцию, в которой присутствуют два аллеля одного гена: А и а. В такой популяции будут встречаться три генотипа: АА, Аа и аа. Обозначим частоту доминантного аллеля через p, а рецессивного через q. В случае свободного комбинирования гамет А и а частота каждого из трех генотипов будет равна: AA = p · p = p2; aa = q · q = q2. Генотип Аа может возникнуть двумя путями: получив ген А — от матери, а ген а от отца, или же наоборот. Вероятность каждого из них равна pq, и, таким образом, общая частота генотипа Aa = pq + pq = 2pq. Геометрическое изображение закона Харди-Вайнберга можно представить в виде решетки Пеннета. Особи с генотипом АА будут образовывать один тип гамет с геном А с частотой p2. У особей с генотипом Аа будут формироваться два типа гамет: половина с А (pq) и половина с а (pq). Особи с генотипом аа дадут все гаметы одного типа с геном а с частотой q2. Общая частота гамет с геном А, таким образом, будет равна p2 + pq = p(p + q) = 1 = p, а гамет с геном а: q2 + pq = q(q + p) = q · 1 = q. Следовательно, частота гамет, а значит и структура популяции (соотношение разных генотипов) в ней и в следующем поколении будут такими же. В этом случае говорят, что популяция находится в состоянии равновесия. Закон Харди-Вайнберга имеет фундаментальное значение. Его формула позволяет рассчитывать частоту разных генотипов в популяции на основании фенотипического анализа. Например, допустим, что в популяции коров животные с рецессивной красной мастью составляют 16%, остальные 84% имеют доминантную черную окраску. Следовательно, частота гомозиготного рецессива q2 = 0,16, а q, соответственно, равна 0,4. Так как p + q = 1, то p = 0,6. Таким образом, частота гомозиготных черных животных p2 = 0,36, а гетерозиготных 2pq = 2 · 0,4 · 0,6 = 0,48. Одно из интересных следствий, которое вытекает из закона Харди-Вайнберга, состоит в том, что редкие гены присутствуют в популяции в основном в гетерозиготном состоянии. Так, если частота рецессивного аллеля q = 0,01, то частота его у гомозигот q2 = 0,0001, а частота у гетерозигот pq = 0,01 · 0,99 ? 0,01, т.е. в гетерозиготном состоянии находится в 100 раз больше аллелей, чем в гомозиготном. Из этого следует вывод, что устранить вредную рецессивную мутацию из популяции практически невозможно: всегда будет существовать зона гетерозигот, где она будет прятаться под прикрытием доминантного гена. Формула Харди-Вайнберга применима для расчетов при следующих условиях: 1) если учитывается одна пара аллелей; 2) спаривание особей и сочетание гамет осуществляется случайно, т.е. нет ограничений на панмиксию; 3) мутации происходят настолько редко, что ими можно пренебречь; 4) популяция достаточно многочисленна; 5) особи с разными генотипами имеют одинаковую жизнеспособность. Перечисленным условиям вряд ли может соответствовать хотя бы одна природная популяция. Закон справедлив для так называемой идеальной популяции. Но это ничуть не умаляет его значения. В жизни каждой популяции существуют периоды, когда она находится в состоянии равновесия по частотам отдельных генов. И если это равновесие по какой-либо причине нарушается, то популяция его достаточно быстро восстанавливает. Источник: licey.net Комментарии: |
|