Как делать сентимент-анализ рекуррентной LSTM сетью | #24 нейросети на Python |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2020-09-22 10:14 Делаем сентимент-анализ коротких высказываний с помощью рекуррентной сети на базе LSTM слоев в пакете Keras. Узнаете как готовить обучающую выборку, в каком формате ее представлять. Методы инструмента Tokenizer: fit_on_texts, texts_to_sequences. Функция pad_sequences для нормировки длины текстовых фрагментов. Класс слоя LSTM и что он из себя представляет. Создание и обучение рекуррентной нейронной сети, состоящей из двух LSTM-слоев. lesson 24. LSTM sentiment analysis.py: https://github.com/selfedu-rus/neur Источник: github.com Комментарии: |
|