![]() |
![]() |
![]() |
|||||
![]() |
Технологии разговорного искусственного интеллекта DeepPavlov стали более доступными благодаря облаку NVIDIA NGC |
||||||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2020-08-30 15:13 ![]() Лаборатория нейронных систем и глубокого обучения МФТИ стала партнером программы NVIDIA GPU Cloud (NGC). Теперь для компаний в облаке NGC доступны контейнеры библиотеки DeepPavlov — главного продукта, разрабатываемого в лаборатории. Российские компании могут применять контейнеры DeepPavlov для решения различных задач, среди которых автоматизация процессов колл-центров и обслуживания клиентов, создание систем ответов на вопросы по внутренней документации, анализ настроений и отзывов клиентов, внедрение готовых диалоговых систем и прикладных исследований в области обработки естественного языка (NLP). Контейнер DeepPavlov состоит из предварительно обученных моделей, которые используют современные модели глубокого обучения типа BERT, для классификации, распознавания именованных сущностей, вопросов-ответов и других задач области NLP. Использование GPU позволяет ускорить работу библиотеки DeepPavlov до 20 раз (для примера был взят запуск конвейеров ASR / TTS на V100 GPU в сравнении с CPU). «Технологии разговорного ИИ DeepPavlov упакованы в простой в развертывании контейнер, размещенный на NGC и оптимизированный для GPU. Это приложение позволяет разработчикам по всему миру создавать масштабируемые, надежные и готовые к внедрению решения так быстро, как никогда раньше, — рассказывает руководитель проекта DeepPavlov, заведующий лабораторией нейронных систем и глубокого обучения МФТИ Михаил Бурцев. — Благодаря совместной работе с NVIDIA мы стали частью NGC и одной из немногих компаний-партнеров в России». NGC — реестр оптимизированного под GPU программного обеспечения для машинного обучения и высокопроизводительных вычислений. Все приложения оптимизированы для максимальной производительности при работе с графическими процессорами NVIDIA и упакованы в контейнеры. Доступ к реестру бесплатный. NGC повышает эффективность облачных вычислений на GPU, а также обеспечивает значительный рост производительности работы моделей машинного обучения, разрабатываемых компаниями-партнерами. DeepPavlov — это библиотека с открытым исходным кодом для создания чат-ботов, виртуальных помощников и анализа текста. Она поставляется с набором предобученных компонентов для решения задач, связанных с обработкой естественного языка, и структурой для построения модульного конвейера, который позволяет разработчикам и исследователям создавать разговорные навыки и сложных диалоговых помощников. Вы можете запускать предварительно обученные модели, используя код Python, интерфейс командной строки, REST API или Docker. В дополнении к библиотеке DP разработан DeepPavlov Agent — многофункциональный оркестратор, использующий декларативный подход для формирования конвейеров и построения диалогового ИИ в виде модульной системы. Источник: robogeek.ru Комментарии: |
||||||