Придут ли квантовые компьютеры на смену традиционным? |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2020-08-05 16:55 Рано или поздно рост производительности компьютеров остановиться по чисто физическим причинам. Сейчас рост производительности достигается за счёт все большей миниатюризации — уменьшения размеров транзисторов, что позволяет разместить в одном кубическом сантиметре больше количество логических элементов. Однако миниатюризация не может продолжаться бесконечно. Уже в 2021-м году ожидается появление процессоров сделанных по 3-х нанометровому технологическому процессу, т.е. минимальный размер элемента составляет 3 нанометра. Для сравнения размер атома кремния, повсеместно используемого при изготовлении процессоров составляет 0.21 нанометра. Очень скоро мы упрёмся в ограничения связанные с атомарной структурой вещества. В связи с этим квантовые компьютеры многие рассматривают как возможную в будущем замену традиционным электронным компьютерам. Что такое квантовый компьютер? Если очень коротко: квантовый компьютер, это вычислительное устройство, использующее некоторые эффекты квантовой механики, такие как суперпозиция и квантовая запутанность для хранения информации и вычислений. В квантовых компьютерах информация хранится в квантовых битах – кубитах (QuBit - quantum bit). Если обычный бит может принимать два строго определённых состояния: 0 и 1, то квантовый бит является вероятностным: он находится в суперпозиции двух возможных состояний: ?|0?+?|1? где ? и ? соответственно являются вероятностями обнаружить кубит в состоянии |0? или |1? соответственно. В теории это может позволить обрабатывать одновременно все возможные состояния объекта и позволит получить большое преимущество над классическими компьютерами при решении некоторых классов задач. Что по быстродействию? Существует распространённое заблуждение, что квантовые компьютеры обладают намного большим быстродействием, чем традиционные. Это не так. На самом деле все современные квантовые компьютеры в тысячи и десятки тысяч раз медленнее обычных электронных компьютеров. Однако существует отдельный класс задач, с которыми квантовые компьютеры благодаря особенностям своего устройства справляются быстрее, а иногда даже намного быстрее. Классическим примером такой задачи является факторизация целых чисел (в особенности очень больших чисел), т.е. разложение их на простые множители. Эта задача особенно важна в современной криптографии, так как многие алгоритмы шифрования основаны на том, что факторизация очень больших чисел является непосильной задачей для современных цифровых компьютеров. Поэтому квантовые компьютеры представляют угрозу для практически всех существующих на данный момент алгоритмов шифрования и систем электронной безопасности. Какие перспективы? Критическим моментом в развитии квантовых вычислений является их помехоустойчивость. Информация хранящаяся в кубитах (квантовых битах) подвержена компрометации из-за декогеренции несущих информацию частиц в результате взаимодействия с другими частицами. Основные надежды связаны с так называемой квантовой пороговой теоремой (Quantum Threshold Theorem), которая гласит, что если удастся создать квантовую схему с достаточно высоким уровнем точности, то с помощью неё можно будет смоделировать квантовый компьютер точность которого будет 100%. Насчёт принципиальной разрешимости этой задачи есть разные мнения. Многие специалисты считают, что это всего-лишь вопрос времени. Другие смотрят на это довольно скептически. Однако даже если пороговая точность квантовых микросхем будет достигнута и мы получим способ создавать надёжные квантовые компьютеры, всё равно я не ожидаю, что они полностью заменят обычные цифровые компьютеры. Дело в том, что квантовые и цифровые компьютеры имеют разные области применения. Квантовые компьютеры не имеют никаких преимуществ перед цифровыми в решении задач, для которых существуют эффективные вычислительные алгоритмы. Наиболее вероятным вариантом развития событий мне видится появление гибридных, квантово-цифровых компьютеров, в которых в дополнение к обычному центральному процессору будет использоваться квантовый сопроцессор, которому основной процессор будет делегировать сложные задачи, как например уже упоминавшаяся выше задача факторизации больших целых чисел. Источник: m.vk.com Комментарии: |
|