Здесь стоит отметить, что модель предобучена, и не требует файн тюнинга под конкретные задачи: для достижения лучших результатов рекомендуется предоставлять ей хотя бы один (one-shot) или несколько (few-shot) примеров решения задач на входе, но можно обойтись вообще без них (zero-shot). Чтобы модель сгенерировала решение задачи, достаточно описать задачу на английском языке. Принято считать, что это алгоритм генерации текстов, но уже видно, что потенциал намного богаче.
Модель была представлена еще в мае, уже тогда Open AI продемонстрировали, что обученная на репозиториях GitHub GPT-3 способна успешно генерировать код Python, и вот, спустя полтора месяца первые счастливчики получили доступ к API и показали свои наработки. Результаты просто потрясающие. Нам, как разработчикам, конечно же, интересно, насколько этот алгоритм упростит нашу жизнь, а может, и создаст конкуренцию.
Уже появился сервис debuild.co, который по текстовому описанию функции создает работающий код и неплохо верстает.


TransCoder Миграция кодовой базы с архаичного языка программирования, такого как COBOL, на современную альтернативу, вроде Java или C ++, является сложной, ресурсоемкой задачей, требующей от специалистов владения обеими технологиями. При этом архаичные языки по сей день используется в мэйнфреймах по всему миру, из-за чего перед владельцами часто возникает сложный выбор — либо вручную переводить кодовую базу на современный язык, либо продолжать поддерживать легаси-код.
Facebook представили самообучающуюся модель с открытым исходным кодом, которая поможет облегчить эту задачу. Это первая система, способная переводить код с одного языка программирования на другой, не требуя параллельных данных для обучения. По оценкам создателей, модель правильно переводит более 90% функций Java в C ++, 74,8% функций C ++ в Java и 68,7% функций из Java в Python. Что выше показателей коммерческих аналогов.
ContraCode Инструменты разработки все чаще используют машинное обучение для понимания и изменения написанного человеком кода. Главная сложность при работе алгоритмов с кодом заключается в нехватке размеченных наборов данных.
Исследователи из Беркли предлагают решить эту проблему с помощью метода ContraCode. Авторы считают, что программы с одинаковой функциональностью должны обладать одинаковыми репрезентациями, и наоборот. Поэтому они генерируют варианты кода для сравнительного обучения (Contrastive Learning). Для создания данных переименовывают переменные, переформатируют и обфусцируют код.
В дальнейшем, самообучаемая по такому методу модель, сможет предсказывать типы, определять ошибки, проводить суммаризацию кода и т.д. Учитывая эти и другие достижения в области, возможно, в скором времени машины научаться писать код не хуже людей.
DeepSIM

3D Photo Inpainting


Если HiDT умеет качественно изменять освещение на изображениях, то эта нейронная сеть, обученная на разных наборах данных, способна менять не только время суток, но и ландшафт. К сожалению, возможности посмотреть исходный код нет, поэтому остается только восхищаться видео, которое демонстрирует возможности этой модели.SCAN Нейронная сеть с открытым исходным кодом, которая самостоятельно группирует изображения в семантически значимые кластеры. Новизна авторского подхода в том, что разделяются этапы обучения и кластеризации. Сначала запускается задача по обучению признакам, потом модель опирается на полученные на первом этапе данные при кластеризации. Это позволяет добиваться лучших результатов, чем другие подобные модели.
RetrieveGAN

Вот таким насыщенным получился июль. Посмотрим, какие новости принесет нам следующий месяц. Спасибо за внимание!