Почему Python — плохой выбор для первого языка программирования? |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2020-08-20 13:30 Так как я веду несколько технических групп и чатов, то часто сталкивался с вопросом от подписчиков о том, с какого же языка лучше начать изучать программирование и информатику. Очень часто кто-то советует именно Python. Я в корне не согласен с этим советом. Мне нравится этот язык, и я ничего не имею против него, он прост и удобен. Но есть кое-какие аргументы против того, чтобы поставить его на место вашего первого языка программирования. Оговорюсь, что всё сказанное далее является субъективным мнением автора и не претендует на истину. Итак, почему... Ниже на картинке я привел пример, как можно с помощью маленькой функции обработать матрицу и вернуть структуру, соответствующую транспонированной матрице. Транспонирование матрицы — это операция над матрицей, при которой ее строки и столбцы меняются местами. Кто уже начинал изучать аналитическую геометрию (линейную алгебру), тот сталкивался с этой простейшей задачей. Иногда это задание дают на уроках информатики в качестве сложных задач на обработку двумерных массивов, которые мы и называем матрицами. Что ж, кому-то может показаться и вовсе несложным. Однако, для большинства начинающих и людей, не сталкивающихся с программированием, понять, что такое двумерный/многомерный массив — это непростая задача. Вы можете не поверить, но есть много очень замудренных задач на обработку многомерных массивов, над которыми придется подумать даже опытному разработчику. Но вернемся к нашей (более-менее легкой ?) задачке про транспонирование. Как вы видите, в Python задачу можно решить буквально за пару строчек кода. И всё это благодаря сложным встроенным функциям и методам, которые очень сильно облегчают ваш мыслительный процесс. В результате программируя на Python в качестве первого своего языка, вы надеваете на себя розовые очки и начинаете считать, что программирование — это просто. В этом есть и доля правды, и в этом есть огромный подвох. Есть другие языки, более низкого уровня, которые помогут вам понять глубину, понять базу, понять структуру, снять розовые очки, убрать синтаксический сахар и как следует подумать над теми вещами, которые ранее вы принимали как должное. Какой из этого вывод? Если вы хотите научиться думать, по-настоящему понимать как работает железо, то лучше начать с низкого уровня. Поэтому полезнее будет начать с Assembler или C. Во-первых, это даст вам лучшее представление о том, как работает процессор и периферийная электроника в вашем ПК. Во-вторых, вы начнете понимать сообщения об ошибках в операционной системе. В-третьих, последующие языки высокого уровня, базирующиеся на крепком фундаменте низкоуровневых основ, покажутся вам более прозрачными и понятными в обращении. Думаю, что можно еще привести кучу плюсов к тому, чтобы начать с низкого уровня. Зачастую, люди, изучающие Python, по привычке подключают в свой код кучу библиотека ради реализации каких-то простейших функций. Логично предположить, что это сильно утяжеляет код и делает его медленным. А если еще вспомнить, что даже эффективно написанный python-код примерно в 1000 раз медленнее аналогичного кода на C/C++, то представьте себе какая производительность в итоге получится. Конечно же не всем разработчикам нужно писать ПО, которое работает в режиме реального времени и требует мгновенных реакций с минимальными задержками. Не всем нужно писать ААА-игры. Тем не менее, обратите внимание на текущую ситуацию в программном обеспечении. Если раньше нужно было 8-битный процессор, чтобы запустить спутник в космос, то сейчас у нас тормозит несколько вкладок в браузере при 2-4 ядерном 64-битном CPU. Так может быть причина как раз в разработчиках, а не в "слабом" железе? Самый ранний из найденных космических аппаратов, в которых стояли не микросхемы средней степени интеграции, а именно монолитный микропроцессор (8-битный RCA 1802) – это спутник Magsat, запущенный 30 октября 1979 года. В завершении хотелось бы сказать, что все языки программирования — то великие достижения в IT-области. Но чтобы нам стать настоящими профессионалами и экспертами, всё равно придется узнать то, с чего всё начиналось, вспомнить об истоках, математике, алгоритмах, ассемблере и даже об электронике и физике. Все знания должны сплетаться в вашей голове в единую картину, в крепкую логическую цепочку. Последнюю получится построить только тогда, когда мы начнем от корня технологий, начнем с самого нижнего уровня. Источник: m.vk.com Комментарии: |
|