Найден способ сделать квантовые состояния длительнее в десять тысяч раз |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту Архив новостей ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2020-08-14 17:51 Подход, разработанный американскими учеными, позволяет практически полностью изолировать квантовую систему от сторонних шумов. Использование квантовых технологий может дать человечеству новые, фантастические по нынешним меркам возможности — например, сверхмощные компьютеры или информационные сети, недоступные для взлома. Но чтобы это случилось, ученым сперва необходимо заставить квантовые системы оставаться в нужном состоянии дольше нескольких миллионных долей секунды. Группа ученых из Притцкеровской школы молекулярного инжиниринга Чикагского университета заявила об открытии модификации, которая позволяет удерживать квантовые системы в «работоспособном состоянии» в 10 тысяч раз дольше, чем ранее. Статья об этом опубликована в издании Science. Свою методику ученые протестировали на определенном классе квантовых систем, так называемых твердотельных кубитах, — однако уверены, что она применима и к другим типам систем. «Этот прорыв закладывает основу для <…> новых направлений исследований в квантовой науке, — говорит ведущий автор работы Дэвид Авшалом. — Широкая применимость этого открытия в сочетании с удивительно простой реализацией позволяет <…> влиять на многие аспекты квантовой инженерии». Хрупкость квантовых состояний — главная и фундаментальная инженерная проблема, с которой квантовые физики сталкиваются в своих изысканиях. Они легко нарушаются даже минимальными вибрациями, сторонними электромагнитными полями или температурными колебаниями. Существует два основных подхода к решению этой проблемы: физическая изоляция квантовых устройств и применение стопроцентно чистых материалов для их создания. Однако первый способ очень сложен и громоздок, а второй — слишком дорог. Авторы новой работы пошли третьим путем. «При нашем подходе мы не пытаемся устранить шум (сторонние физические влияния на систему. — Прим. ред.) в окружающей среде; вместо этого мы «обманываем» систему, заставляя ее действовать так, что она не испытывает шума», — говорит соавтор статьи Кевин Мьяо. В тандеме с обычными электромагнитными импульсами, используемыми для управления квантовыми системами, команда применила дополнительное непрерывное переменное магнитное поле. Благодаря тонкой настройке этого поля, ученые смогли управлять спинами электронов и «отключить» систему от внешнего шума. «Это как сидеть на карусели, когда вокруг вас кричат люди, — приводит аналогию Мьяо. — Когда конструкция неподвижна, вы всех прекрасно слышите, но если карусель быстро вращается, то фоновый шум становится размытым». Такой подход позволил удерживать систему в нужном состоянии до 22 миллисекунд — на четыре порядка дольше, чем в системах без подобной модификации. Новая методика позволяет изолировать квантовые устройства от температурных флуктуаций, физических колебаний и электромагнитных шумов. «Такая методика открывает путь к масштабируемости, — резюмирует Дэвид Авшалом. — Это должно сделать хранение квантовой информации в электронном спине действительно практичным. Более продолжительный период хранения даст возможность выполнять более сложные операции в квантовых компьютерах и позволит квантовой информации <…> перемещаться на большие расстояния в сетях». Ранее мы сообщали о том, что в CERN одобрили проект строительства гигантского коллайдера длиной более 100 километров, а поведение нейтрино указало на возможное решение проблемы дефицита антиматерии во Вселенной. Источник: naked-science.ru Комментарии: |
|