11 популярных библиотек Python для Data Science |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2020-08-16 12:01 1. TensorFlow Разработанный компанией Google фреймворк глубокого обучения TensorFlow, без сомнения, – популярнейший инструмент для обучения нейросетей. Google активно использует собственный фреймворк для таких крупномасштабных сервисов, как Gmail и Google Translate. TensorFlow применяют такие бренды, как Uber, Airbnb, Xiaomi, Dropbox и другие.
2. Scikit-Learn Популярная библиотека машинного обучения Scikit-Learn написана на Python, C и C++. Самый распространенный выбор для решения классических задач машинного обучения. Используется и в промышленных системах, и в научных исследованиях.
3. NumPy NumPy – одна из самых популярных библиотек Python, применяемых для машинного обучения. TensorFlow и другие библиотеки используют ее «внутри себя» для выполнения операций с многомерными массивами. Математические алгоритмы, реализованные на интерпретируемых языках (Python), часто работают гораздо медленнее тех же алгоритмов, реализованных на компилируемых языках. Библиотека NumPy предоставляет реализации вычислительных алгоритмов, оптимизированные для работы с многомерными массивами. 4. Keras Keras – идеальный выбор, если нужно быстро и просто собрать модель глубокого обучения. Представляет собой надстройку над фреймворками TensorFlow и Theano. Библиотека нацелена на оперативную работу с сетями глубинного обучения, при этом спроектирована так, чтобы быть компактной, модульной и расширяемой. Keras предоставляет высокоуровневый, интуитивный набор абстракций, который делает простым формирование нейронных сетей, независимо от используемой в качестве вычислительного бэкенда библиотеки научных вычислений.
5. PyTorch PyTorch – один из лучших вариантов для работы с нейросетями, давний конкурент TensorFlow. Разрабатывается преимущественно группой искусственного интеллекта Facebook. Именно PyTorch использовался в качестве фреймворка глубокого обучения в статье Генеративно-состязательная нейросеть: ваша первая GAN-модель.
6. LightGBM LightGBM – это фреймворк на основе градиентного бустинга – одного из самых популярных алгоритмов в соревнованиях Kaggle. Градиентный бустинг – это техника машинного обучения для задач классификации и регрессии, которая строит модель предсказания в форме ансамбля предсказывающих моделей, обычно деревьев решений.
7. Pandas Pandas – библиотека, предоставляющая высокоуровневые структуры для работы с данными и широкий спектр инструментов для их анализа. Библиотека позволяет выполнять множество сложных команд с небольшим количеством кода: сортировка и группировка данных, работа с недостающими данными, временными рядами и т. д. Все данные представляются в виде таблиц датафреймов.
8. SciPy SciPy предназначена для выполнения научных и инженерных расчётов, в том числе задач машинного обучения.
9. Eli5 Eli5 – это библиотека Python для визуализации и отладки моделей машинного обучения с помощью унифицированного API. Имеется встроенная поддержка нескольких ML-фреймворков и библиотек: упоминавшихся выше scikit-learn, Keras, LightGBM, а также XGBoost, lightning и CatBoost. 10. NLTK (Natural Language Toolkit) NLTK – пакет библиотек и программ для символьной и статистической обработки естественного языка. Сопровождается обширной документацией, включая книгу с объяснением концепций, стоящих за задачами обработки естественного языка, которые можно выполнять с помощью данного пакета. 11. Pillow Pillow – улучшенная версия библиотеки изображений PIL (Python Image Library). Поддерживает разнообразные типы файлов: PDF, WebP, PCX, PNG, JPEG, GIF, PSD, WebP, PCX, GIF, IM, EPS, ICO, BMP и другие. Есть множество инструментов фильтрации, которые можно использовать для задач компьютерного зрения. Заключение Мы рассмотрели подборку полезностей, которую активно используют специалисты машинного обучения, знатоки нейросетей и прочих направлений Data Science. Если вам интересна наука о данных, обратите внимание на наши публикации по тегу Data Science. Другие материалы по библиотекам ML и DS:
Источники Источник: proglib.io Комментарии: |
|