Нейросети на Python #8: Keras - обучение сети распознаванию рукописных цифр |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2020-07-03 08:42 Создаем полносвязную сеть в Keras для распознавания рукописных цифр из базы MNIST. Рассматриваются вопросы подготовки тестовой, обучающей и проверочной выборок. Критерий качества (loss function) - категориальная кросс-энтропия (categorical_crossentropy). Добавление метрики 'accuracy' - доля правильно распознанных образцов. Использование параметра validation_split - для выделения из обучающей выборки набора наблюдений для валидации. Оценка качества работы обученной сети на тестовом множестве. Комментарии: |
|