Нейросеть обучили распознавать хрящи запястья на томограмме |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2020-07-29 17:45 Изображение с обложки журнала Международная группа исследователей из Центра диагностики и телемедицины и Национального исследовательского университета ИТМО создала сверточную нейронную сеть, которая научилась эффективно распознавать хрящи на двухмерных магнитно-резонансных томограммах запястья. Это позволит проводить более тщательное сравнение нормальной и патологической анатомии запястья при, например, остеоартрите, оценивать прогрессирование заболеваний и их ответ на лечение. Статья, опубликованная в журнале NMR in biomedicine, попала на обложку августовского номера издания. Магнитно-резонансная томография считается лучшим средством визуализации для тканей головного мозга, органов малого таза и суставов. В том числе этот метод используется для оценки изменений в анатомии суставов, происходящих во время развития того или иного патологического процесса. Чтобы проанализировать структурную целостность хрящей суставов на изображениях, их нужно отделить от других тканей – сегментировать. Из-за того что разные ткани в этой области по контрасту могут совпадать с хрящами, автоматическая сегментация здесь затруднена, и золотым стандартом считается ручная сегментация – сложный и довольно трудоемкий процесс, сильно зависящий при этом от опытности оператора. Не так давно исследователи для улучшения качества автоматической сегментации начали предлагать сверточные нейронные сети, которые уже продемонстрировали свои возможности в выделении хрящевой ткани коленного сустава. Нейросети подобной архитектуры входят в состав технологий глубокого обучения и нацелены на эффективное распознавание различных образов. Но для сегментации запястья подобных предложений существует не много. Ученые из Центра диагностики и телемедицины и ИТМО разработали и оптимизировали сверточную нейросеть для полностью автоматической сегментации хряща лучезапястного сустава, а также оценили ее эффективность по сравнению с другими нейросетями. Для создания нейросети использовались планарная архитектура и ограниченное окружение классифицируемого вокселя (patch based, PB). Такой подход в обучении заключается в следующем: берется пиксель на изображении, который необходимо классифицировать как «хрящ/не хрящ», и выделяется некоторое количество пикселей вокруг него для характеристики, а не все изображение целиком. Это обеспечивает оптимальную производительность при наличии ограниченного количества обучающих данных. В основу обучения нейросети легли 20 многослойных МР-исследований, полученных с использованием двух различных катушек от 11 человек (здоровые добровольцы и пациенты с остеоартритом). Эффективность методики сравнивалась с альтернативными нейросетями для сегментации суставов по МР-изображениям и с ручной сегментацией. В итоге разработанная сверточная нейронная сеть с PB-обучением опередила другие общепринятые нейросети. Также она продемонстрировала эффективность, схожую с ручной сегментацией (коэффициент подобия Серенсена – Дайса (DSC) = 0,81), в тех срезах (коронарных, вдоль ладони), которые более ценны для диагностики из-за визуализации большего количества хрящевой ткани. Тем не менее исследователи отмечают, что сеть несколько хуже справлялась со своими задачами в других срезах, где визуализировалось меньше хрящевой ткани. «Наши результаты подчеркивают то, как важно включать достаточное количество пациентов в обучающие наборы исследований. Кроме того, точность этого подхода можно повысить с помощью стратифицированной выборки обучающих данных, полученной с помощью различных томографов. А для обеспечения более точного анализа всего сустава необходимо создавать полностью трехмерные сверточные нейросети», – отмечает руководитель исследования Анна Андрейченко, руководитель сектора медицинской информатики, радиомики и радиогеномики Центра диагностики и телемедицины. Сегментация хрящей запястья по МР-исследованиям, основанная на глубоком обучении, поможет обнаружить так называемые биомаркеры визуализации заболеваний сустава, в том числе остеоартрита. В дальнейшем это даст возможность более точно оценивать прогрессирование патологий и их ответ на лечение. Пресс-релизы о научных исследованиях, информацию о последних вышедших научных статьях и анонсы конференций, а также данные о выигранных грантах и премиях присылайте на адрес science@indicator.ru. Источник: indicator.ru Комментарии: |
|