Стоит ли заменить Python на Julia? |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2020-06-08 15:00 В течение последних двух лет популярность интерпретируемого языка Python, который был написан на C, резко возросла. Хоть он и является полезным языком, который стал достаточно распространён с момента своего появления, такой резкий скачок интереса обычно связывают с его фантастическими возможностями в машинном обучении и статистическом анализе. Тем не менее время не стоит на месте, и были разработаны новые языки с целью потеснить Python на этом поприще, предлагая более скоростной опыт всесторонней работы с машинным обучением. Один из наиболее многообещающих и популярных конкурентов в этом смысле — Julia. Julia является мультипарадигмальным, статически типизированным языком общего назначения, созданным с уклоном на машинное обучение и статистику. Главным мотивирующим фактором в использовании Julia обозначена его скорость, но стоит помнить, сколькими переменными определяется одна только скорость. При этом речь не идёт о других возможностях или недостатках, присущих этому языку. Python Notebook; Julia Notebook. Обзор Несмотря на то, что скорость очень важна, причём особенно важна в контексте машинного обучения, я считаю, что наряду с производительностью также важно обсудить и другие факторы. Главный вопрос, который стоит задать прежде, чем решаться покинуть Python, звучит так: Какие недостатки есть у Julia? Нет смысла изучать новый язык, если его недостатки перевесят единственное преимущество в производительности. У Julia есть ряд проблем, из-за которых переход на него для определённых разработчиков может показаться нецелесообразным. Первая и, возможно, серьёзнейшая утрата при переходе с Python на Julia — пакеты. Несмотря на то, что у Julia есть отличные пакеты, равно как и хороший пакетный менеджер для работы с ними, их область применения далеко не такая широкая, как у Python. Многим из них существенно недостаёт документации, у других есть сложности с зависимостями, третьи запутанны и настолько фрагментированы, что вам придётся добавлять пятьдесят таких пакетов для достижения одной цели. Хоть это и очевидный недостаток, стоит отметить, что у Julia ещё нет настолько развитой династии модулей, как у Python, потому что последний существенно более взрослый язык. С течением времени эта проблема скорее всего будет решена. А если учесть, что над Julia работают отличные разработчики, и у этого языка уже есть многогранное и быстрорастущее сообщество, то долго эта проблема не просуществует. Я понимаю, почему некоторые приверженцы Julia могут указывать на “PyCall.jl” как на потенциальное её решение, но не соглашусь с такой позицией, потому что использование PyCall для всех целей будет ещё медленнее, чем использование Python. Почему бы тогда просто не остановиться на нём? Ещё один существенный недостаток заключается в парадигме Julia. Хотя этот язык и является мультипарадигмальным и поддерживает множество обобщений, синтаксис Julia по сути статичен, т.е. по большей части код Julia будет подпадать под функциональную парадигму. Я уверен, что поклонники Lisp, R и Haskell обрадовались бы такой новости, но, глядя на список наиболее популярных языков программирования, понимаешь, почему переход на эту парадигму может оказаться серьёзным вызовом даже для опытных программистов. Так что, хоть этот факт может и не показаться недостатком для меня или некоторых других разработчиков, он может отпугнуть тех, кто не имеет к подобному языку существенного интереса. Предполагается, что мы знакомы с Python, поэтому я не стану тратить время на разъяснения того, почему вы можете захотеть переключиться с Python на Julia. Тем не менее есть ряд недостатков Python, которые всё же стоит рассмотреть объективно, чтобы определить плюсы и минусы потенциального перехода с этого языка на Julia. Во-первых, мы все наверняка слышали, что Python является интерпретируемым языком. И хотя для обхода этого недостатка определённо есть решения, вроде различных инструментов для получения скомпилированного исполняемого файла и повышенной скорости, ничто из этого не является гарантированным способом сделать пакет быстрее или распространить ПО. Хоть я и не большой приверженец лозунга “Python == ‘slow’”, но недостаток скорости этого языка отрицать невозможно. К счастью, интерпретация Python через C ставит его в уникальное положение, в котором он может использоваться для управления C-кодом и его вызова из интерфейса высокого уровня. Это, конечно, большой плюс Python, но не вся работа в области науки о данных выполняется в модулях, уже написанных на C, и иногда добавочный слой заголовка Python.h может также понизить скорость вычислений, загубив высокую производительность C. Вам решать Ещё раз повторюсь, что несмотря на важность скорости, она не определяет всё. Есть много существенных преимуществ использования как Python, так и Julia, некоторые из которых субъективны. Например, я не терплю синтаксис отступов в Python, поэтому работа в Julia, где функции оканчиваются знаками ограничения, будет для меня субъективным преимуществом. def func: end Я бы также хотел отметить полиморфную диспетчеризацию Julia и более простой синтаксис у Python. Все эти замечания призваны обратить ваше внимание на то, что хоть производительность и важна, множество других возможностей могут послужить перевешивающим фактором при выборе предпочтительного языка. Кроме того, вам следует подбирать конкретный язык для текущего сценария, поскольку есть задачи для которых отдельные языки подойдут лучше. Ещё один интересный момент при работе с Julia — это идея использовать Python в качестве интерфейса Julia, а не C. Это даст нам возможность ускорить написание быстрого кода, сохраняя при этом производительность. По этому случаю я даже создал пакет, дающий такую возможность, который вы можете установить через PyPi. sudo pip3 install TopLoader emmettgb/TopLoaderHello, and happy loading! You can install TopLoader with: sudo pip3 install TopLoader Now from TopLoader you can either…github.com Ваш выбор языка не обязательно должен быть двоичным. Что хорошо в Julia, так это возможность продолжать использовать Python и применять при этом Julia, как в случае со Scala, учитывая преимущества Julia в работе с большими данными и точность в числах с плавающей точкой. В этом языке даже есть типы BigInt и BigFloat для обработки достаточно крупных чисел. Тесты скорости Для демонстрации фактической скорости я привёл бенчмарки Julia. Как можно видеть из данного простого примера, время задержки Julia близко к Go, но при этом он остаётся более последовательным. Также очень интересно, что в очень редких случаях Julia опережает по производительности даже C и Rust. Это, конечно, отличные показатели, но главное здесь не в сравнении Julia с C, а в сравнении его именно с Python. Настройка теста Для поддержания последовательности между двумя сравнениями я буду использовать синтаксические выражения Julia, чтобы приблизить выполнение типизации к Python. Для моего теста итерирования я создал в Julia следующую функцию: function LinearRegression(x,y) Аналогичным образом для достижения той же цели я создал класс в Python: class LinearRegression: Вы можете заметить, что я использовал dot() и sq(), чтобы заменить .* для поэлементного умножения и .^ для поэлементного возведения в квадрат. Вот эти функции: def dot(x,y): Данные Для своих данных я сгенерировал в Julia DataFrame размерностью 500 000 следующим образом: Я также сделал тестовый DataFrame размерностью 600 000: Затем я сохранил эти DataFrame и прочитал их в Python с помощью Pandas: Тайминги Для получения таймингов результатов Python я, конечно же, буду использовать магическую команду IPython%timeit. А для Julia, как вы могли ожидать, я буду использовать макрос @time. Вот результаты: Julia Python Хоть это и отличное сравнение, при котором Julia определённо справилась с вычислением на 30 процентов быстрее, я хочу провести испытание при высокой нагрузке. Давайте попробуем размерность 10 000 000. Julia Python Прощай, Python. Заключение Несмотря на то, что изначально Python выглядел достаточно впечатляюще на фоне Julia, становится немного грустно от того, насколько Julia опередил его в реальном примере машинного обучения. Я думаю, это также отлично подтверждает сказанное ранее о том, что Julia невероятно полезна в обработке именно больших данных. Лично для меня этот тест по меньшей мере доказал одну вещь, а именно то, что Julia вполне имеет право на место в мире машинного обучения. Даже если этот язык и не заменит Python, он определённо сможет занять место Scala и многих других аналогичных языков. Julia имеет свои недостатки и всё ещё развивается, но его производительность уже при нём. Возможно, в мире машинного обучения никогда и не настанет время избавляться от Python , но при этом я не вижу серьёзных поводов не начать изучать Julia. К счастью, если вы уже знакомы с Python, то изучение Julia будет относительно простым, поскольку их синтаксис во многом схож. Возможно, вы откроете для себя и другие его преимущества. Как бы то ни было, Julia в мире машинного обучения ждёт удивительное будущее. Думаю, что любой аналитик данных, заинтересованный в расширении горизонтов знаний, должен ознакомиться с этим языком, а может даже принять участие в его развитии. Источник: m.vk.com Комментарии: |
|