Раскрыта концепция создания «мозга на чипе» |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2020-06-19 04:27 Группа учёных работает над созданием мозгоподобных мемристивных систем , обеспечивающих высочайшую степень адаптивности, энергоэффективности, необходимую для реализации компактных и эффективных нейроинтерфейсов, робототехники нового поколения, искусственного интеллекта, умного города, персонализированной медицины и др. Учеными Университета Лобачевского в сотрудничестве с другими коллегами из России, Италии, Китая и США впервые предложена концепция мемристивного нейрогибридного чипа для использования в компактных биосенсорах и нейропротезах.В основе концепции лежат существующие и перспективные решения на стыке нейронных клеточных и микрофлюидных технологий, позволяющие вырастить пространственно упорядоченную живую нейронную сеть, в сочетании с КМОП-совместимыми технологиями создания микроэлектродных матриц и массивов мемристивных устройств для регистрации, обработки и стимуляции в реальном времени биоэлектрической активности. Со слов заведующего лабораторией Научно-исследовательского физико-технического института ННГУ, взаимодействие разных подсистем организуется на одном кристалле (чипе) и управляется встроенными аналого-цифровыми схемами. "Реализация такой биосовместимой микроэлектронной системы, наряду с развитием клеточных технологий, обеспечит прорыв в области нейропротезирования с важным конкурентным преимуществом: миниатюрный датчик биоэлектрической активности на основе микро- и наноструктур с возможностью хранения и обработки сигналов в режимах как прямого распространения, так и обратной связи будет играть роль активного нейроинтерфейса для интеллектуального управления нейрональными структурами. Такие возможности недостижимы на основе традиционных архитектур нейроинтерфейсов и могут быть распространены на другие типы биоэлектрических сигналов для решения проблем регистрации сигналов активности мозга, сердца и мышц, а также состояния кожи в составе носимых систем обработки сигналов и диагностики", – подчеркнул Алексей Михайлов. В настоящее время ученые для разработки и создания двунаправленных нейроинтерфейсов применяют сложные электронные схемы, реализующие специальные математические модели и нейроморфные принципы обработки информации. Такие электронные системы основаны на традиционной компонентной базе и не отвечают требованиям энергоэффективности и компактности для безопасного взаимодействия с живыми культурами или тканями на одном чипе."Мемристоры, созданные учёными из России и Италии, обладают уникальным свойством нелинейной резистивной памяти и являются перспективными элементами аналоговых систем обработки информации, в том числе с нейроноподобной структурой, а также можгут служить датчиками электрофизиологической активности с функцией одновременного накопления и энергонезависимого хранения информации", – отмечает Алексей Михайлов. "Именно уникальные свойства мемристивных устройств определяют их решающее значение в разработке прикладных нейроморфных и нейрогибридных систем для нейровычислительных устройств, интерфейсов «мозг-компьютер» и нейропротезирования. Данные сферы займут значительную часть мирового рынка высоких технологий объемом в триллионы долларов к 2030 г. с учетом скорости развития и внедрения технологий искусственного интеллекта, Интернета вещей, технологий «больших данных», «умного города», робототехники, а в ближайшем будущем, также нейропротезирования и инструментальной корректировки / поддержки / усиления когнитивных способностей человека", – говорит в заключение Алексей Михайлов. Соответствующее экспертное мнение группы учёных в форме статьи-перспективы опубликовано в журнале Frontiers in Neuroscience (https://doi.org/10.3389/fnins.2020.00358) в рамках специального выпуска «Новые технологии и системы для биологически правдоподобной реализации нейронных функций». Различные исследовательские задачи в рамках реализации данной концепции уже активно решаются в университете Лобачевского при поддержке Российского научного фонда (грант № 16-19-00144), – в части создания массивов металл-оксидных мемристоров для двунаправленного нейроинтерфейса, Российского фонда фундаментальных исследований (гранты №№ 18-29-23001 и 20-01-00368), – в части мозгоподобных мемристивных нейросетевых архитектур и спайковых нейронных сетей, а также Правительства Российской Федерации (Соглашение № 074-02-2018-330 (2)), – в части индуцированных шумом явлений в мемристивных материалах, устройствах и сетях. Отдел по связям с общественностью и онлайн-образованию ННГУ им. Н.И. Лобачевского Все статьи в группе носят информационный характер и служат для дальнейших собственных суждений Источник: vk.com Комментарии: |
|