k-ближайших соседей |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2020-06-25 09:01 Есть таблица со значениями 2-ух параметров, по которым некоторые объекты разделяется на типы: «хорошо», «плохо», «средне». Есть объект, у которого известно значение параметров (5.2;3.1), но не известно какого он типа. Для понимания создадим на том же листе в excel точечную диаграмму, в качестве значений по оси X зададим данные из второго столбца, а качестве оси Y – из первого. Для того, чтобы лучше видеть наши значения можно ограничить значения по осям и добавить подписи. Должно получиться примерно так: Добавим и наш объект, тип которого нужно определить. Основная идея метода, который мы хотим применить, состоит в расчете расстояний между нашим объектом и объектами, тип которых уже определен. Для того, чтобы вычислить это расстояние, воспользуемся формулой для расчета расстояния в многомерном пространстве (Евклидово расстояние): В excel это будет выглядеть так: «Протянем» формулу на все строки, где есть значения параметров. В соседнем столбце слева можно ранжировать значение каждого расстояния среди остальных значений расстояний с помощью функции «=РАНГ(), а в правый просто копируем значение типа. Должно получиться так: Теперь для того, чтобы определить тип нашего объекта достаточно выбрать k-первых значений из получившегося массива (по возрастанию). В качестве числа k возьмем максимальное целое число, которое меньше корня квадратного из числа заданных значений. Для нас это будет число 3. Можно заметить, что наибольшее количество (в данном случае все) k-ближайших соседей относятся к «плохо». Следовательно, наш объект тоже относится к «плохо». Для того, чтобы сделать «куличик» в песочнице, не следует подгонять экскаватор. Есть ситуации, например, когда вы строите дом, где без спецтехники не обойтись. Но в случае с куличиком результат будет похож на ковш и весьма вероятно накроет собой всю песочницу. Иными словами, некоторые задачи Data mining не требуют ни «космической сложности алгоритмов», ни глубоких познаний в высшей математике, не предполагают также использования «разнообразных framework-ов с пугающими названиями» и доступны любому, кто умеет пользоваться важнейшим из инструментов «уверенного пользователя ПК» — excel. Источник: newtechaudit.ru Комментарии: |
|