Что такое теория игр? |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2020-06-13 18:37 Экономист Дмитрий Дагаев о стратегических взаимодействиях, теории игр в социальных науках и Нобелевской премии Джона Нэша Теория игр — это наука, изучающая принципы принятия решений в ситуациях, в которых несколько агентов взаимодействуют между собой. Решения, принимаемые кем-то одним, влияют на решения остальных и на исход взаимодействия в целом. Взаимодействия такого типа называются стратегическими. Слово «игра» не должно вводить в заблуждение. Это понятие в теории игр трактуется шире, чем в повседневной жизни. Ситуация стратегического взаимодействия может быть описана в виде модели, которую и называют игрой. Таким образом, в теории игр игрой будет считаться не только игра в шахматы, но и голосование в Совете Безопасности ООН, и торг продавца с покупателем на рынке. Стратегические взаимодействия встречаются практически в любой сфере нашей жизни. Пример из экономики: несколько компаний, конкурирующих на рынке, при принятии решений должны оглядываться на действия конкурентов. Если мы будем говорить о политике, то кандидаты, соперничающие на выборах, объявляя свою предвыборную платформу, естественно, принимают во внимание позиции других кандидатов по отношению к этому вопросу. А если мы изучаем взаимодействие людей в обществе, то с помощью теории игр можно узнать много интересного о склонности людей к кооперации. Представители социальных наук часто используют теорию игр в качестве инструмента, который позволяет решать интересующие их задачи. Упрощая, теоретико-игровое моделирование можно разбить на два этапа. Сначала по реальной жизненной ситуации нужно построить формальную модель. Как правило, в модели нужно отразить три основные характеристики жизненной ситуации: кто взаимодействует друг с другом (такие агенты в теории игр называются игроками), какие решения могут принимать игроки и какие платежи они в результате этого взаимодействия получают. Формальная модель и называется игрой. Как только мы построили игру, ее нужно каким-то образом решить. На этой стадии мы полностью абстрагируемся от реальности и изучаем исключительно формальную модель. Как устроено решение модели? Мы должны зафиксировать концепцию поведения игроков в игре, то есть принципы принимаемых ими решений. Как только мы зафиксировали эту концепцию, мы можем постараться с ее помощью решить игру, то есть предъявить исход, которым закончится игра. С помощью разных теоретико-игровых концепций можно решать разные классы игр. Один из самых красивых теоретических результатов теории игр доказывает, что в некотором очень широком классе моделей можно гарантированно найти решение. Я имею в виду результат Джона Нэша, полученный им в 1950 году: в любой конечной игре в нормальной форме можно всегда найти по крайней мере одно равновесие в смешанных стратегиях. Хронологически это была первая универсальная теоретико-игровая концепция, которая позволяет гарантированно найти решение в очень широком классе моделей. В отличие от представителей социальных наук, математиков-игровиков больше интересуют внутренние свойства игр и концепций их решения. Именно благодаря таким теоретическим результатам мы можем быть уверены в том, что, строя и решая ту или иную теоретико-игровую модель, мы в итоге получим решение с необходимыми свойствами. Конечно, Джон Нэш не является единоличным автором теории игр. Теория игр как самостоятельная наука начала развиваться чуть раньше, в начале ХХ века. Первые попытки формально определить игры, стратегии игроков и концепции решения игр восходят к именам Эмиля Бореля и Джона фон Неймана. Однако именно Нэш предъявил концепцию равновесия, которая позволяет гарантированно найти решение в конечных играх. В честь автора теоремы о существовании равновесия в смешанных стратегиях в конечных играх это равновесие стали называть равновесием Нэша. Врученная в 1994 году первая Нобелевская премия за результаты в области теории игр (Джону Нэшу, Райнхарду Зелтену и Джону Харсаньи) фактически утвердила статус теории игр как самостоятельного научного направления со своими задачами и методами их решений. Последовавшие за этим еще несколько Нобелевских премий вручались как за фундаментальные теоретико-игровые результаты, так и за приложения теории игр к той или иной стороне нашей жизни. В ведущих университетах мира на программах и по экономике, и по политическим наукам теория игр обязательно входит в стандартный набор курсов. Часто ее изучают и психологи, и математики. Сегодня, если посмотреть на секции крупных конференций и на статьи в ведущих научных журналах по теории игр, количество работ, использующих аппарат теории игр для решения прикладных задач, гораздо больше, чем количество фундаментальных теоретико-игровых результатов. Текущее состояние дисциплины можно описать так: в теории игр сформировалось достаточно мощное ядро, пласт знаний, который позволяет получать хорошие и интересные результаты исследователям из смежных областей. Тем не менее всегда открываются новые интересные направления исследований и в самой теории игр. Так, благодаря развитию вычислительных технологий появились новые теоретико-игровые концепции, учитывающие возможности и ограничения вычислительных машин. Благодаря им появилась возможность решать новые задачи. Результат 2015 года о равновесии в одной из версий покера, полученный Боулингом, Берчем, Йохансоном и Таммелином, — замечательный пример использования современных теорий и технологий. Источник: postnauka.ru Комментарии: |
|