Машинное обучение I Основные понятия, решающие деревья, бустинг и бэггинг Практика на sklearn

МЕНЮ


Искусственный интеллект
Поиск
Регистрация на сайте
Помощь проекту

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


Первое занятие курса посвящено классическим методам. Сперва мы рассмотрим общую постановку задач машинного обучения, разберемся, какими они бывают. Далее изучим метрический классификатор kNN и его модификации, рассмотрим решающие деревья и случайные леса, а также начнем разбираться с линейными моделями.

С одной стороны, курс не будет требовать серьезных знаний математики, поэтому рассчитан на довольно широкую аудиторию.
С другой стороны, в курсе все равно будет подробно рассматриваться теория (пусть и без доказательства теорем и сложных математических выводов), чтобы у слушателей сложилось полное понимание работы алгоритмов, и они не воспринимали Машинное обучение как «магию», которую надо повызывать из Питона, и она почему-то сработает (или нет).
Также, в отличие от полностью теоретических курсов, будет подробно обсуждаться и практическая часть: какие есть реализации алгоритмов в Питоне и как ими пользоваться.

Практика и все сопутствующие материалы будут выложены на сайте курса plyus.pw/ml2020

Преподаватель курса: ассистент кафедры информатики МФТИ Плюснин Павел

Проведи самоизоляцию с пользой! Присоединяйся к трансляции!


Источник: www.youtube.com

Комментарии: