Как превратить глию в нейроны в живом организме |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту Архив новостей ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2020-05-15 20:48 Китайские исследователи разработали метод прижизненного перепрограммирования клеток мюллеровской глии в ганглионарные клетки сетчатки у мышей с повреждениями сетчатки и мышей с болезнью Паркинсона. Статья была опубликована в Cell. Мюллеровская глия показана желтым Среди подходов к лечению нейродегенеративных заболеваний и повреждений мозга другой природы наряду с пересадкой нейронов предлагается другой путь восстановления погибших нейронов – перепрограммирование клеток глии в нейроны. Стандартный подход, заключающийся в переключении транскрипционных факторов, благодаря которому клетка одного типа начинает экспрессировать гены другого типа клеток, в условиях нервной ткани живого организма работает плохо: эффективность превращения глиальных клеток в нейроны нужного типа чрезвычайно низка. Китайские ученые предложили новый изящный подход для превращения глии в нейроны, который показал свою эффективность на мышах с поврежденной сетчаткой. У мышей, с которыми работали исследователи, наблюдалась гибель особого вида нейронов – ганглионарных клеток сетчатки. Оказалось, что для превращения глиальных клеток сетчатки (мюллеровская глия) в ганглионарные клетки достаточно понизить экспрессию в них гена Ptbp1, кодирующего РНК-связывающий белок. Сайленсинг («приглушение» экспрессии) гена Ptbp1 исследователи осуществили с помощью особого вида системы CRISPR-Cas – CRISPR-Rx. В отличие от наиболее популярной системы CRISPR, CRISPR-Cas9, которая активнейшим образом используется в редактировании геномов, мишенью CRISPR-Rx является не ДНК, а РНК, в данном случае – мРНК, считанная с гена Ptbp1. Таким образом, система CRISPR-Rx не вносит изменений в геном клетки, а просто подавляет синтез белка с гена Ptbp1, то есть осуществляет его нокдаун. Компоненты системы CRISPR-Rx доставляются в организм мыши с помощью очень популярного инструмента для доставки генетических конструкций в клетки – аденоассоциированного вируса (AAV). Нейроны, полученные из «перекрестившихся» глиальных клеток, были полностью функциональны, и зрительные реакции у подопытных мышей восстановились. Но на этом авторы пошли дальше и решили опробовать новый метод в борьбе против одного из самых частых нейродегенеративных заболеваний – болезни Паркинсона. Они опробовали систему CRISPR-Rx в качестве инструмента для перепрограммирования глиальных клеток в дофаминергические нейроны черной субстанции, гибель которых наблюдается при болезни Паркинсона. Мишенью сайленсинга и в этом случае был ген Ptbp1. После перепрограммирования клеток глии и восстановления популяции дофаминергических нейронов двигательные нарушения у мышей стали гораздо менее выраженными. Авторы работы надеются, что предложенный ими подход станет мощным средством в борьбе с разнообразными нейрогенеративными расстройствами. Текст: Елизавета Минина Zhou, H., Su, J., Hu, X., Zhou, C., Li, H., Chen, Z., … Yang, H. (2020). Glia-to-Neuron Conversion by CRISPR-CasRx Alleviates Symptoms of Neurological Disease in Mice. Cell. doi:10.1016/j.cell.2020.03.024 Источник: neuronovosti.ru Комментарии: |
|