Физики создали оптический сенсор на основе квантового алгоритма.

МЕНЮ


Искусственный интеллект
Поиск
Регистрация на сайте
Помощь проекту

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


Чувствительность измерительных приборов является важнейшей характеристикой во всех областях науки и техники: астрономам необходимо точно детектировать далекие космические явления, биологам — различать мельчайшие органические структуры, а инженерам — измерять положения или скорости различных объектов. До совсем недавнего времени ни одно из существовавших измерительных устройств не могло обеспечить точности выше так называемого предела дробового шума — ограничения, обусловленного статистическими особенностями классических измерений. Однако с возникновением квантовых технологий появилась возможность обойти эту преграду и достичь наивысшего гейзенберговского предела точности, который, в свою очередь, объясняется основными принципами квантовой механики. Пример LIGO (обсерватории, на установках которой несколько лет назад были детектированы гравитационные волны) показывает, что гейзенберговская чувствительность может быть достигнута с помощью сочетания сложных оптических интерференционных схем с квантовыми технологиями.

Новейшая область физики — квантовая метрология — изучает технические и алгоритмические средства для осуществления высокоточных квантовых измерений. Физики из МФТИ и Аргоннской национальной лаборатории решили совместить методы квантовой метрологии с линейной оптикой.

«Мы придумали и построили оптическую схему, выполняющую процедуру оценки фазы на основе преобразования Фурье, — рассказывает один из авторов статьи, Никита Кирсанов из МФТИ. — Эта процедура является главным компонентом многих известных квантовых алгоритмов; в том числе она используется в высокоточных измерительных протоколах».

Экспериментальная установка, состоящая из очень большого числа линейных оптических элементов (светоделителей, фазовых пластин и зеркал), позволяет получать информацию о геометрических углах, положениях, скоростях и других параметрах физических объектов. Для измерения той или иной величины необходимо «закодировать» ее в оптические фазы, непосредственно измеряемые в эксперименте.

«Эта работа является продолжением нашей исследовательской деятельности в области универсальных квантовых измерительных алгоритмов, — говорит руководитель проекта Гордей Лесовик, заведующий лабораторией физики квантовых информационных технологий МФТИ. — Ранее совместно с финской группой из Университета Аалто мы экспериментально реализовали аналогичный измерительный алгоритм, но на базе трансмонных кубитов».

Эксперимент показал, что, несмотря на большое количество оптических элементов, интерференционная схема поддается настройке и контролю. Кроме того, согласно теоретическим оценкам, приведенным в статье, средствами линейной оптики можно реализовывать операции даже значительно большей сложности. Таким образом, ученые показали, что линейная оптика является доступной и эффективной платформой для реализации квантовых измерительных и вычислительных операций умеренного масштаба.

Комментарии: