Ученые приблизились к созданию нейроморфных компьютеров |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2020-04-20 19:43 Устройство, созданное из бактериальных белковых структур и металлических электродов, продемонстрировало способность к обучению и созданию новых связей. Исследователи из Массачусетского университета в Амхерсте создали нейроморфный мемристор на основе белковых нанонитей. Это своеобразная модификация искусственного мозга, которая способна передавать сигналы при очень низком напряжении — порядка нескольких десятков милливольт. Статья об этом опубликована в Nature Communications. По словам ведущего автора работы Тианда Фу, одним из самых больших препятствий для создания нейроморфных вычислительных устройств является именно то, что большинство обычных компьютеров работают при напряжении выше одного вольта. При этом напряжение сигналов, которые наш мозг направляет по нейронам (так называемые потенциалы действия), — порядка 80 милливольт. Благодаря использованию белковых нанонитей Фу и его коллеги смогли создать мемристоры, которые работают при «неврологических» значениях напряжения. Электропроводящие протеиновые нити для создания устройства были получены из белков бактерий Geobacter sulfurreducens. Они имеют ряд преимуществ по сравнению с нанопроводами из кремния: так, белковые наноструктуры более стабильны в водных растворах и биологических жидкостях, а для их производства не требуются высокоэнергетические процессы и токсичные химические вещества. «Впервые [вычислительное] устройство может работать при том же уровне напряжения, что и мозг, — говорит соавтор исследования Цзюнь Яо, специалист по вычислительной технике и электронике. — Люди, вероятно, даже не осмеливались надеяться, что мы сможем создать устройство, которое будет столь же энергоэффективным, <…> но теперь у нас есть реальные доказательства вычислительных мощностей со сверхнизким энергопотреблением». По мнению Цзюня Яо, их разработка — настоящий прорыв в области компьютерной техники. В основе работы мемристора лежит способность белков G.sulfurreducens индуцировать электрохимическое восстановление металлов. Устройство состоит из двух серебряных электродов на силикатной подложке; пространство между электродами заполнено бактериальными наноструктурами. Подача сигналов на электроды приводила к тому, что в нанонитях возникали новые соединения и разветвления размером в сотни раз меньше диаметра человеческого волоса. Этот процесс отдаленно напоминает возникновение новых связей при обучении в мозге человека. «Можно модулировать проводимость или пластичность нановолоконно-мемристорного синапса, чтобы он мог эмулировать биологические компоненты для вычислений, основанных на модели мозга, — говорит Цзюнь Яо. — По сравнению с классическим компьютером это устройство обладает способностью к обучению, которая не обусловлена программным обеспечением». В дальнейшем создатели нового мемристора планируют «в полной мере изучить химию, биологию и электронику» белковых нанопроводов в мемристорах, чтобы создать устройства, которые могли бы служить полноценным «продолжением нейронов в мозге». Источник: naked-science.ru Комментарии: |
|