Нейросети в помощь геймдев-художнику: машинное обучение для создания игрового пиксель-арта |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2020-04-13 12:01 Приведённые на заголовочной картинке спрайты взяты из игры Trajes Fatais: Suits of Fate. Создание одного такого спрайта занимает около часа, каждый персонаж в среднем требует пятисот спрайтов. Используя архитектуру Pix2Pix для автоматизации конвейера производства спрайтов, можно вдвое сократить время, затрачиваемое на один спрайт. Эстетика пиксель-арта стремится воссоздать внешний вид старых игр. В 90-х такая графика являлась естественным следствием ограниченных возможностей техники. Сегодня пиксельная графика – намеренный выбор эстетики, требующий дополнительных ухищрений. Чтобы достичь необходимой стилизации, художники должны принять ограничения. Оригинальный Game Boy имел только четыре оттенка зелёного цвета. Его преемник, Game Boy Color, отображал до 56 различных цветов. Более поздние устройства поколения 16-битных приставок допускали до 256 цветов на пиксель, что существенно изменило эстетику. Как художники создают персонажей игры в стиле пиксельной графики Визуальная сторона персонажа – это набор спрайтов с опредёленной цветовой палитрой из 256 цветов. При рисовании художник «затеняет» каждый пиксель спрайта так, что цвет соответствует индексу цветовой палитры. Впоследствии пиксели окрашиваются в соответствии с выбранной палитрой и получается окончательное изображение. Такой подход позволяет создавать различные «скины» персонажа – цветовые оболочки, которые, меняют палитру в зависимости от игровой ситуации или предпочтений пользователя. Ограничивать художников 256 цветами не вполне естественно, выбор оттенков – сложная процедура. Задачу облегчают, разбивая её на создание двух промежуточных спрайтов: спрайт
В результате каждый пиксель описывается двумя незавимыми индексами, которые дают Указанная процедура преобразует проблему 256 цветов в две подзадачи по 6 и 42 цвета в каждой. Но прежде чем получить эти спрайты, персонаж разрабатывается художником, создающим концепт-арт для всех анимаций. Обычно они представлены в виде эскизного спрайта, а затем уточнены в виде штрихового рисунка. Первый используется для быстрого создания прототипов новой анимации, а второй – для обсуждения с другими художниками идеи финального спрайта. Таким образом, художник разрабатывает концпет персонажа и передаёт оставшуюся работу по отрисовке команде иллюстраторов. На создание эскизов, штриховых рисунков и разметки областей у опытных художников уходит в среднем десять минут, в то время как затенение, создающее фактуру персонажа, занимает оставшуюся часть часа. Следующая работа предполагает, что спрайты Краткое введение в генеративно-состязательные сети Для решения задачи мы должны создать генератор Представим, у нас уже есть несколько штриховых рисунков ( Архитектура Pix2Pix Архитектура Pix2Pix основана на генераторе U-Net и патч-дискриминаторе. Объединённая архитектура показана на следующем рисунке. Дискриминатор обучен так, чтобы классифицировать каждый патч Модель U-Net – это полносвязная сверточная нейронная сеть, основанная на идее кодера-декодера. К каждому слоя кодера добавляется skip-соединение к эквивалентному слою декодера. Это позволяет сети использовать «исходную» информацию из слоёв кодера и информацию, «обработанную» слоями декодера (см. подробный обзор этой архитектуры и соответствующих публикаций). Патч-дискриминатор представляет собой нейросеть, выводящую суждение для нескольких патчей изображения вместо одного суждения для всего изображения. То есть обеспечивается детализация обратной связи с генератором: дискриминатор указывает, какие области выглядят реальными, а какие – фальшивыми (см. подробный обзор внутренних деталей архитектуры). В отличие от оригинальной сети, в решение задачи были внесены следующие уточнения:
Набор данных Чтобы оценить полезность архитектуры Pix2Pix для работы над игрой Trajes Fatais, были выбраны данные двух персонажей: Сара ( Таким образом, Люси была своего рода «задачей минимум»: все данные есть, персонажа и так исходно легко рисовать. Если алгоритм не сможет обработать Люси, он, скорее всего, потерпит неудачу и для любого другого персонажа. Напротив, Сара – герой нашего идеального сценария: умерено сложная фигура с ограниченным числом спрайтов для обучения. Если получится облегчить процесс отрисовки спрайтов для Сары, получится и для других персонажей. Результаты На первой подборке спрайтов выше можно видеть, что алгоритм даёт хорошие результаты для задачи шейдинга и проблемы с разметкой областей: цвета сдвинуты, вокруг фигуры девушки появились шумовые элементы. Для Во второй подборке можно найти больше проблем. В столбце Для третьей партии из 207 спрайтов имелись только штриховые наброски. Таким образом, они требуют субъективного анализа. Три строки соответствуют разным типам спрайтов:
В то время как первый ряд в основном полезен, цветовые спрайты сильно ухудшились во втором и третьем рядах. Качество На данный момент мы можем с уверенностью предположить, что могут быть полезны Спрайтов для обучения у Люси в пять раз больше, чем у Сары. Спрайты Итак, увеличение размера набора данных значительно улучшает Для количественной оценки качества сгенерированного контента мы вычислили для обоих наборов данных среднеквадратичную ошибку (RMSE), среднюю абсолютную ошибку (MAE) и индекс структурного сходства (SSIM) . Как видно из таблицы, серые спрайты по всем трем показателям имеют лучшее среднее значение ( Результаты Люси неизменно лучше, чем у Сары, с гораздо меньшей дисперсией и значительно меньшим перекосом. Показатель SSIM варьируется от 0 (полностью разные) до 1 (идентичные) и измеряет сходство двух изображений. В то время как MSE и MAE являются чисто математическими понятиями, оценка SSIM более близка к человеческому восприятию. В таблице серые спрайты имеют около одного балла. В качестве третьей и заключительной оценки команда дизайнеров была опрошена относительно 207 сгенерированных спрайтов для персонажа Сары. Их отзывы были в основном положительными, хвалили качество
Обсуждение результатов и дальнейшая работа В этой работе мы оценили использование современных генеративных моделей для решения проблемы генерации пиксельного арта. Модифицированная архитектура Pix2Pix позволила добиться ускорения работы: для совершенствования каждого из Спрайты типа Другие работы нашли аналогичные выводы в области аниме, которая состоит в основном из плоских поверхностей и имеет меньше ограничений, чем пиксельная графика. Библиотека программиста также писала об этих исследованиях:
Описанная работа ещё раз демонстрирует, что современные модели могут эффективно использоваться в качестве помощников в творческих задачах. Источники Источник: proglib.io Комментарии: |
|