Google опубликовал данные и модель машинного обучения для разделения звуков

МЕНЮ


Искусственный интеллект
Поиск
Регистрация на сайте
Помощь проекту

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


Компания Google опубликовала базу данных эталонных смешанных звуков, снабжённую аннотациями, которую можно использовать в системах машинного обучения, применяемых для разделения произвольных смешанных звуков на отдельные компоненты. Также опубликована универсальная модель глубинного машинного обучения (TDCN++), которая может быть использована в Tensorflow для разделения звуков. Данные подготовлены на основе коллекции freesound.org и опубликованы под лицензией CC BY 4.0.

Представленный проект FUSS (Free Universal Sound Separation) нацелен на решение проблемы разделения любого числа произвольных звуков, о характере которых заранее не известно. Другие подобные системы, как правило, ограничены задачей разделения определённых звуков, например, голоса и не голоса или разных говорящих людей.

БД насчитывает около 20 тысяч смешиваний. В набор также входят предварительно рассчитанные импульсные характеристики помещения, подготовленные при помощи специально созданного симулятора комнаты и учитывающие отражение от стен, местоположение источника звука и местоположение микрофона.


Источник: www.opennet.ru

Комментарии: