Data Engineer и Data Scientist: что умеют и сколько зарабатывают

МЕНЮ


Искусственный интеллект
Поиск
Регистрация на сайте
Помощь проекту

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


Вместе с Еленой Герасимовой, руководителем факультета «Data Science и аналитика» в Нетологии продолжаем разбираться, как взаимодействуют между собой и чем различаются Data Scientist и Data Engineer.В первой части рассказали об основных отличиях Data Scientist и Data Engineer.
В этом материале поговорим о том, какими знаниями и навыками должны обладать специалисты, какое образование ценится работодателями, как проходят собеседования, а также сколько зарабатывают дата-инженеры и дата-сайентисты. 

Что должны знать сайентисты и инженеры

Профильное образование для обоих специалистов — Computer Science.

Любой специалист по данным — дата-сайентист или аналитик — должен уметь доказывать корректность своих выводов. Для этого не обойтись без знания статистики и связанной со статистикой базовой математики.

Машинное обучение и инструменты анализа данных незаменимы в современном мире. Если привычные инструменты недоступны, нужно иметь навыки быстрого изучения новых инструментов, создания простых скриптов для автоматизации задач.

Важно отметить, что специалист по работе с данными должен эффективно донести результаты анализа. В этом ему поможет визуализация данных или результатов проведённых исследований и проверки гипотез. Специалисты должны уметь создавать диаграммы и графики, использовать инструменты визуализации, понимать и разъяснять данные из дашбордов.

Для инженера данных на первый план выходят три направления.
Алгоритмы и структуры данных. Важно набить руку в написании кода и использовании основных структур и алгоритмов:

  • анализ сложности алгоритмов,
  • задачи оперативного программирования, 
  • пакетная обработка,
  • обработка в реальном времени.

Базы и хранилища данных, Business Intelligence:

  • хранение и обработка данных,
  • проектирование целостных систем,
  • Data Ingestion,
  • распределенные файловые системы.

Hadoop и Big Data. Данных становится всё больше, и на горизонте 3?5 лет эти технологии станут необходимы каждому инженеру. Плюс:

  • Data Lakes,
  • работа с облачными провайдерами.

Машинное обучение будет использоваться повсеместно, и важно понимать, какие бизнес-задачи оно поможет решить. Не обязательно уметь делать модели (с этим справятся дата-сайентисты), но нужно разбираться в их применении и соответствующим требованиям.

Сколько получают инженеры и сайентисты

Доход инженеров по обработке данных

В международной практике начальная зарплата обычно составляет $100 000 в год и значительно увеличивается с опытом, по данным Glassdoor. Кроме того, компании часто предоставляют опционы на акции и 5?15% годовых бонусов.

В России в начале карьеры зарплата обычно не меньше 50 тыс. рублей в регионах и 80 тыс. в Москве. На этом этапе не требуется опыт, кроме пройденного обучения.

Через 1?2 года работы — вилка 90?100 тыс. рублей.

Вилка увеличивается до 120?160 тыс. через 2?5 лет. Добавляются такие факторы, как специализация прошлых компаний, размер проектов, работа с big data и прочее.

После 5 лет работы легче искать вакансии в смежных отделах или откликаться на такие узкоспециализированные позиции, как:

  • Архитектор или ведущий разработчик в банке или телеком — около 250 тыс.

  • Pre-Sales у вендора, с технологиями которого вы работали плотнее всего, — 200 тыс. плюс возможен бонус (1?1,5 млн рублей). 

  • Эксперты по внедрению Enterprise business application, таких как SAP, — до 350 тыс.

Доход дата-сайентистов

Исследование рынка аналитиков компании «Нормальные исследования» и рекрутингового агентства New.HR показывает, что специалисты по Data Science получают в среднем большую зарплату, чем аналитики других специальностей. В России начальная зарплата дата-сайентиста с опытом работы до года — от 113 тыс. рублей. 

В качестве опыта работы сейчас также учитывается прохождение обучающих программ.
Через 1?2 года такой специалист уже может получать до 160 тыс.

Для сотрудника с опытом работы от 4?5 лет вилка вырастает до 310 тыс.

Как проходят собеседования

На западе выпускники программ профессионального обучения проходят первое собеседование в среднем через 5 недель после окончания обучения. Около 85% находят работу через 3 месяца.

Процесс прохождения собеседований на вакансии инженера данных и дата-сайентиста практически не различается. Обычно состоит из пяти этапов.

Резюме. Кандидатам с непрофильным предыдущим опытом (например, из маркетинга) необходимо для каждой компании подготовить подробное сопроводительное письмо или иметь рекомендации от представителя этой компании.

Технический скрининг. Проходит, как правило, по телефону. Состоит из одного-двух сложных и столько же простых вопросов, касающихся текущего стека работодателя.

HR-интервью. Может проходить по телефону. На этом этапе кандидата проверяют на общую адекватность и способность общаться.

Техническое собеседование. Чаще всего проходит очно. В разных компаниях уровень позиций в штатном расписании отличается, и называться позиции могут по-разному. Поэтому на этом этапе проверяют именно технические знания.

Собеседование с техническим директором / главным архитектором. Инженер и сайентист — стратегические позиции, а для многих компаний к тому же новые. Важно, чтобы потенциальный коллега понравился руководителю и совпадал с ним во взглядах.

Что поможет сайентистам и инженерам в карьерном росте

Появилось достаточно много новых инструментов по работе с данными. И мало кто одинаково хорошо разбирается во всех. 

Многие компании не готовы нанимать сотрудников без опыта работы. Однако кандидаты с минимальной базой и знанием основ популярных инструментов могут получить нужный опыт, если будут обучаться и развиваться самостоятельно.

Полезные качества для дата-инженера и дата-сайентиста

Желание и умение учиться. Необязательно сразу гнаться за опытом или менять работу ради нового инструмента, но нужно быть готовым переключиться на новую область.

Стремление к автоматизации рутинных процессов. Это важно не только для продуктивности, но и для поддержания высокого качества данных и скорости их доставки до потребителя.

Внимательность и понимание «что там под капотом» у процессов. Быстрее решит задачу тот специалист, у которого есть насмотренность и доскональное знание процессов.

Кроме отличного знания алгоритмов, структур данных и пайплайнов, нужно научиться мыслить продуктами — видеть архитектуру и бизнес-решение как единую картину. 

Например, полезно взять любой известный сервис и придумать для него базу данных. Затем подумать, как разработать ETL и DW, которые наполнят её данными, какие будут потребители и что им важно знать о данных, а также как покупатели взаимодействуют с приложениями: для поиска работы и знакомств, прокат автомобилей, приложение для подкастов, образовательная платформа.

Позиции аналитика, дата-сайентиста и инженера очень близки, поэтому переходить из одного направления в другое можно быстрее, чем из других сфер.
В любом случае, обладателям любого ИТ-бэкграунда будет проще, чем тем, у кого его нет. В среднем взрослые мотивированные люди переучиваются и меняют работу каждые 1,5?2 года. Легче это даётся тем, кто учится в группе и с наставником, по сравнению с теми, кто опирается лишь на открытые источники.

От редакции Нетологии

Если присматриваетесь к профессии Data Engineer или Data Scientist, приглашаем изучить программы наших курсов:


Источник: habr.com

Комментарии: