CenterTrack: state-of-the-art нейросеть для отслеживания объектов на видеозаписи |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2020-04-07 16:00 CenterTrack — это модель для отслеживания объектов на видеозаписи. Нейросеть принимает на вход текущий кадр, прошлый кадр и тепловую карту с предсказаниями для прошлого кадра. На выходе модель выдает границы объектов для текущего кадра и соотносит их с объектами с прошлого кадра. В случае если для обучения недоступны видеоданные, CenterTrack позволяет обучаться на датасетах с изображениями. Предложенный подход масштабируется на задачи 3D трекинга объектов, multi-category трекинга и трекинга позы человека. CenterTrack выдал state-of-the-art результаты на датасетах MOT17, KITTI и nuScenes. Задача отслеживания традиционно рассматривается как следование за интересующими точками в пространстве и времени. Текущие нейросетевые модели подходят к задаче отслеживания объектов через ассоциации во времени (tracking-by-detection). Исследователи предлагают подход, который проще, быстрее и более точно предсказывает границы объектов и ассоциации между объектами, чем state-of-the-art. CenterTrack отслеживает объекты через отслеживание их центров. Модель выучивает смещение в 2D пространстве между двумя кадрами. Затем она предсказывает ассоциации между объектами с разных кадров на основе этого смещения. Что внутри модели Нейросеть принимает на вход два кадра (текущий и предыдущий) и предсказания для прошлого кадра. На основе этих данных модель распознает точки объектов на текущем кадре и соотносит с предсказанными точками для прошлого кадра. Архитектура CenterTrack основывается на модели CenterNet. Результаты работы CenterTrack Исследователи сравнили CenterTrack с другими моделями движения на датасетах MOT17, KITTI и nuScenes. Ниже видно, что выдает сравнимые или выше результаты, чем альтернативные подходы. Источник: neurohive.io Комментарии: |
|