Автоматическое распознавание ветровалов в лесах Дальнего Востока

МЕНЮ


Искусственный интеллект
Поиск
Регистрация на сайте
Помощь проекту

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


Сотрудники Ботанического сада-института ДВО РАН (г. Владивосток) - старший научный сотрудник лаборатории геоботаники Дмитрий Евгеньевич Кислов и ведущий научный сотрудник той же лаборатории Кирилл Александрович Корзников применили алгоритмы компьютерного зрения и глубокого обучения для распознавания на космических снимках ветровальных участков в лесных массивах острова Кунашир Сахалинской области. В результате получена уникальная технология автоматического распознавания ветровалов в лесах Дальнего Востока. Результаты опубликованы в журнале Remote Sensing. Поздравляем наших коллег!

– Как человек понимает, что на космическом снимке находится участок с ветровальным лесом? – задает вопрос Дмитрий Кислов, старший научный сотрудник лаборатории геоботаники. – Такой фрагмент снимка отличается не только цветом, у него своеобразная «полосчатая» текстура, которую образуют хорошо различимые стволы поваленных деревьев. Мы использовали подход к дешифрированию, имитирующий работу человеческого глаза и мозга – обучили свёрточную нейронную сеть распознавать именно такой паттерн изображения. Создав и обучив нейросеть, мы добились точности распознавания ветровальных участков равной 94%, что существенно лучше результатов применения других методов автоматического дешифрирования космических снимков.

Кунашир стал площадкой исследования неслучайно. На острове находится государственный природный заповедник «Курильский», леса которого сильно пострадали от ураганных ветров и последовавшей за ветровалами вспышки численности короедов и других жуков-дендрофагов. Минувшим летом исследователи из ботанического сада при поддержке администрации и сотрудников Курильского заповедника организовали полевые работы по изучению повреждённых лесов. Хотя остров и стал своеобразным полигоном для обучения и демонстрации возможности современных технологий анализа спутниковых данных, разработанная нейронная сеть с успехом может быть использована для идентификации ветровалов в соседних регионах со схожими типами лесов. Тем более что ураганные ветра в минувшие годы повалили леса не только на Южных Курилах, но и на юге Сахалина, а также в Приморском крае.

– Мы использовали космические снимки с разрешением 30–50 см на один пиксель изображения, поэтому наша нейросеть способна распознавать даже вывалы небольших групп деревьев, что позволяет давать и сверхточную оценку площадей поврежденных древостоев, и их расположение. – Говорит Кирилл Корзников, ведущий научный сотрудник лаборатории геоботаники и руководитель проекта. – Разработанный алгоритм дешифрирования, помимо решения наших собственных задач в области фундаментальной науки, будет полезен в сфере управления лесами и лесопользовании, например, при проведении лесоустроительных мероприятий, в природоохранной деятельности.

Использование нейронных сетей для анализа данных полученных со спутниковых аппаратов и беспилотных летательных аппаратов – передовое научно-прикладное направление в области дистанционного зондирования Земли. Результаты работы дальневосточных ученых выполнены в рамках проекта «Режим нарушений и изменение закономерностей динамики лесных экосистем юга Дальнего Востока России в условиях усиления тропических циклонов», поддержанного Российским научным фондом, опубликованы в ведущем международном журнале Remote Sensing («Дистанционное зондирование») и находятся в свободном доступе (https://www.mdpi.com/2072-4292/12/7/1145/htm). В ближайших планах исследователей – создание нейросетевых алгоритмов способных идентифицировать поврежденные стволовыми вредителями деревья и различать виды деревьев в лесном пологе.


Источник: www.mdpi.com

Комментарии: