Анимация графиков в Python за 4 шага |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2020-04-27 12:03 Создание динамики в визуализации данных позволяет рассказать историю более выигрышно. Это несложно, если вы используете Python. Для построения в этой статье мы воспользуемся данными по распространению COVID-19 в США – в настоящий момент именно в США наибольшее количество заболевших (сейчас уже почти 1 млн человек). Отфильтруем топ-5 пострадавших штатов по состоянию на 16 апреля 2020 года, добавим Вашингтон и Калифорнию и построим график числа заболевших в пересчёте на 100 тысяч человек. Итоговый результат, к которому мы стремимся, выглядит так: Весь код, данные и готовый график можно найти в этом репозитории. 1. Загрузка данных Начнём анализ с импорта библиотек и создания датафреймов: Разберемся подробнее, что здесь происходит. В первой секции мы импортируем несколько библиотек:
Если у библиотеки еще не установлены, можно это исправить с помощью pip: Во второй секции мы генерируем два датафрейма. Исходные данные:
Наконец, в третьей секции объединяем два фрейма в один – Дополнительно мы вычисляем коэффициент встречаемости COVID-19 на 100 тысяч человек населения, разделив количество случаев на население штата и умножив на 100 000. Результат вычислений записываем в столбец 2. Подготовка данных Теперь у нас есть данные по всем штатам – но этого слишком много. Визуализация данных получилась бы беспорядочной и непонятной. Поэтому ограничим наш анализ и отберем штаты с самым высоким коэффициентом заболевших по состоянию на 16 апреля 2020 года. Добавим к ним также Вашингтон и Калифорнию, поскольку у них рано было зарегистрировано большое число случаев заболевания. В четвертой секции мы отбираем штаты, которые войдут в конечную визуализацию. Для этого создаем новый фрейм В секции 5 фильтруем исходный датафрейм – оставляем только отобранные штаты. Ограничиваем начало диапазона 1 марта 2020, так как до этой даты случаев заболевания было мало или информация о них неполная. Наконец, создаем сводную таблицу, подготовленную к отображению. В шестой секции сбрасываем индекс многоиндексного датафрейма, чтобы обеспечить возможность построения графиков. Удаляем столбец даты. Это довольно спорное решение, но учитывая то, что мы хотим анимировать график, будет проще отображать динамику относительно количества дней, прошедших с 1 марта 2020 года. 3. Построение графиков Данные подготовлены, можно переходить к построению графиков на Python. Приведенный ниже код повторяется несколько раз – он создает множество png-изображений для разных временных точек. Затем мы просто сошьем их вместе, чтобы получить gif-изображение. Здесь мы делаем несколько вещей:
Укажите правильный путь! Не забудьте изменить последнюю строчку кода – укажите правильный путь к папке с графиками. Чтобы все работало правильно, выделите для этого отдельную пустую директорию, в которой кроме графиков ничего нет. 4. Создание анимации Мы добрались до самого интересного! Пора превратить папку с png-картинками в единый анимированный gif. В этом фрагменте мы делаем две вещи:
*** Так выглядит анимированный график, который мы создали за несколько простых шагов. Увы, он демонстрирует быстрое распространение COVID-19. Источники Источник: proglib.io Комментарии: |
|