Топ-10 курсов по машинному и глубокому обучению в 2020 |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2020-03-26 20:00 Знаете, о чём я мечтал, когда начал изучать машинное обучение? О таком сборном курсе по машинному обучению формата всё-в-одном. В то время было трудно найти хороший курс со всеми необходимыми концепциями и алгоритмами. Так что нам приходилось искать по всей сети, читать исследовательские документы и покупать книги. К счастью, сегодня это больше не проблема. Теперь мы в противоположной ситуации. Появилось очень много хороших и не очень курсов. Как же разобраться в их качестве и понять, какой из них включает в себя все те вещи, которым вы хотите научиться? Для этого я составил список самых популярных курсов с высококлассной подачей материала. Я и сам прошёл большинство из них и очень яро рекомендую их все. Любой инженер машинного обучения или исследователь данных порекомендует вам, как минимум, один курс из списка, а как максимум — все. Так что можете больше не искать. Поехали. 1) Машинное обучение от Stanford (Coursera) https://youtu.be/e0WKJLovaZg Этот курс многие считают лучшим по машинному обучению среди всех существующих. Преподаёт сам Andrew Ng — для тех, кто не знает его, он профессор в Стэнфорде, сооснователь платформы Coursera, сооснователь Google Brain и вице-президент Baidu. Программа покрывает все базовые вещи, которые вам нужно знать. Вдобавок у этого курса огромный рейтинг 4.9 из 5, что говорит о многом. Материал полностью завершённый и подходит для новичков, так как учит базовым принципам линейной алгебры и исчислению в форме обучения под присмотром куратора. Единственный недостаток, о котором я могу вспомнить, это то, что в курсе используется Octave (версия Matlab с открытым кодов) вместо Python и R. Авторы на самом деле хотят, чтобы вы сосредоточились на алгоритмах, а не на программировании. Стоимость: бесплатно для изучения, $79 за сертификат Время обучения: 76 часов Рейтинг: 4.9/5 Программа:
2) Специализация по глубокому обучению от deeplearning.ai (Coursera) https://youtu.be/ycGXgWCxw38 И снова курс ведёт Andrew Ng. Опять же, он лучший в сфере глубокого обучения. Видите в этом закономерность? Программа в реальности состоит из 5-ти разных курсов, и они все дадут вам чёткое понимание большинства важных вещей в области архитектуры нейронных сетей. Если вы серьёзно заинтересованы в качественном обучении, то идите на этот курс. В курсе применяют язык Python и библиотеку TensorFlow (кое-какие знания для прохождения всё же потребуются), и это даст вам возможность работать с реальными задачами обработки естественного языка, компьютерного зрения, здравоохранения. Стоимость: бесплатно для изучения, $49/месяц за сертификат Время прохождения: 3 месяца (11 часов/неделя) Рейтинг: 4.8/5 Программа:
3) Специализация по углубленному машинному обучению (Coursera) https://youtu.be/6BC-azc1mHw Специализацию по углубленному машинному обучению создали в Национальном исследовательском университете “Высшая Школа Экономики”. Курс структурировали и преподают практиканты по машинному обучению Top Kaggle и ученые CERN. Он включает в себя 7 разных курсов и покрывает более глубокие темы, например, обучение с подкреплением и обработка естественного языка. Скорее всего, вам понадобится больше математики и достаточного понимания базовых идей машинного обучения, а от авторов вы получите превосходные инструкции и интересную среду. Я очень рекомендую этот курс. Стоимость: бесплатно для изучения, $49/месяц за сертификат Время прохождения: 8–10 месяцев (6–10 часов/неделя) Рейтинг: 4.6/10 Программа:
4) Машинное обучение от Georgia Tech (Udacity) https://youtu.be/zA5QNkJspxY Если вам нужен целостный подход к сфере и интерактивное окружение, то этот курс создан прямо для вас. Должен признать, что я не видел более полной учебной программы, чем эта. От обучения с куратором и без до улучшения знаний — в нём есть всё, о чём вы только можете подумать относительно данной темы. Курс не обучит вас глубоким нейросетям, но он даст чёткое понимание всех разнообразных алгоритмов машинного обучения, их сильных/слабых сторон и того, как их можно вплетать в разработку реальных приложений. Если вы фанат очень коротких видеороликов и интерактивных опросов, разбросанных по всему курсу, то вы обязательно найдёте, чему порадоваться в процессе обучения на этом курсе. Стоимость: бесплатно Время для прохождения: 4 месяца Программа:
Если интересуетесь ещё образовательным контентом и ресурсами по теме МО и ИИ, загляните в наш блог theaisummer.com 5) Введение в машинное обучение (Udacity) https://youtu.be/ICKBWIkfeJ8 Этот начальный курс составил и ведёт Sebastian Thrun, сооснователь платформы Udacity, вместе с Katie Malone, директором Data Science Research and Development. Основная аудитория этой программы — начинающие, кто ищет стартовое обучение в сфере МО. И снова, если вам нравится платформа Udacity (так же сильно, как мне), это отличная возможность начать погружаться в тему. Стоимость: бесплатно Время для прохождения: 10 недель Программа:
6) Наностепень по глубокому обучению (Udacity) https://youtu.be/swAoGqBiDNs Этот курс научит вас всем передовым алгоритмам по глубокому обучению: от свёрточных сетей до генеративно-состязательных сетей. Он достаточно дорогостоящий, но это единственный курс с 5-ю разными практическими проектами. Вы создадите классификатор собачьих пород, систему генерации лиц, модель анализа настроений и ещё вы научитесь, как разворачивать их на этапе продакшна. И лучшая часть в этом курсе — учиться у таких авторитетов, как Jun-Yan Zhuand, Andrew Trask, Sebastian Thrun и Ian Goodfellow. Стоимость: 1316 евро Время на прохождение: 4 месяца Рейтинг 4.6/5 Программа:
7) Машинное обучение от Columbia (edX) https://youtu.be/IcnFJs4DENs Следующий пункт в списке — курс на платформе edX авторства Колумбийского университета. Курс требует основательной математической подготовки (линейная алгебра и вычисления) и знаний по программированию (Python или Octave), так что, если бы я был новичком, то этот курс я бы отложил на потом. Тем не менее, такое обучение может идеально подойти более продвинутым студентам, если они хотят развивать у себя математическое понимание алгоритмов. Одна вещь делает этот курс уникальным — факт, что программа сфокусирована на вероятностной области машинного обучения, покрывая такие темы, как Байесовская линейная регрессия и скрытые марковские модели. Стоимость: бесплатно, $227 за сертификат Время на прохождение: 12 недель Программа:
8) Практика глубокого обучения для кодеров, v3 ( от fast.ai) https://youtu.be/CzdWqFTmn0Y Практика глубокого обучения для кодеров — это восхитительный бесплатный ресурс для людей с некоторым опытом программирования (не слишком долгим и не очень углубленным). Он состоит из множества заметок, заданий и видеороликов. Его создали вокруг идеи дать студентам практический опыт в области, так что подготовьтесь всё время что-то программировать на всём сроке обучения. Вы можете даже узнать, как пользоваться GPU-сервером для обучения ваших моделей. Достаточно круто. Стоимость: бесплатно Время на прохождение: 12 недель (8 часов/неделя) Программа:
9) Machine Learning A-Z™ (Машинное обучение от А до Я) : Практическое применение Python и R в науке о данных Определённо, это самый популярный курс по ИИ на платформе Udemy с количеством заявленных студентов в 500 000 человек. Авторы: Кирилл Еременко (исследователь данных и эксперт систем Forex) и Hadelin de Ponteves, тоже исследователь данных. В этом курсе можете ожидать анализа большинства важных алгоритмов МО с шаблонами кода на Python и R. 41 час обучения и 31 статья — вместе это стоит того, чтобы пройти данный курс. Стоимость: 199 € (но есть скидки. В момент написания оригинала статьи цена была 13.99€) Время на прохождение: 41 час Программа:
10) CS234 — Обучение с подкреплением от Stanford https://youtu.be/FgzM3zpZ55o Стопроцентно, самый трудный курс из списка, потому что тема обучения с подкреплением самая сложная. Но если хотите погрузиться в неё, то нет лучшего способа. Фактически это вживую записанные лекции из Стенфордского университета. Будьте готовы к тому, что сами станете студентом Стэнфорда. Профессор Emma Brunskill рассказывает все эти сложные темы доступно для понимания, даёт прекрасное введение в системы RL и алгоритмы. Конечно, вы найдёте много математических уравнений и доказательств, но здесь и нет другого пути, по которому можно прийти к обучению с подкреплением. Веб-сайт курса здесь, а видео лекции — в плей-листе на Youtube. Стоимость: бесплатно Время для завершения: 19 часов Программа:
Вот и весь список базовых лучших курсов по машинному и глубокому обучению. Некоторые из них могут показаться вам слишком углубленными, в некоторых слишком много математики, а другие чересчур дорогие, но всё же, каждый из них гарантировано научит вас всему, что нужно для успеха в области ИИ. Буду честным до конца, на самом деле не важно, какой из курсов вы выберете. Все они действительно первоклассные. Важная начать и закончить учиться после того, как вы выберете один из курсов. Читайте также:
Перевод статьи Sergios Karagiannakos: Top 10 courses to learn Machine and Deep Learning (2020) Источник: m.vk.com Комментарии: |
|