Кто такие слизевики? |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2020-02-26 13:00 Кто такие слизевики Слизевики (англ. slime molds) — подвижные наземные одноклеточные фаготрофы, формирующие крупные спороносные структуры, плодовые тела. Макроскопические размеры и сухопутный образ жизни ставят их в один ряд с четырьмя другими группами: многоклеточными животными, зелеными растениями, настоящими грибами и суперколониальными цианобактериями (например, Nostoc pruniforme). Но среди членов этого «клуба тяжеловесов» слизевики выделяются полным отсутствием истинной многоклеточности, то есть не образуют массу физиологически связанных клеток, происходящих от одной клетки-предшественницы. У них нет ни тканей, ни органов, ни даже их аналогов, как у высших грибов. Слизевик начинает жизнь в виде микроскопической амебы, которая, после ряда драматических преобразований, превращается в россыпь крупных и яркоокрашенных споровместилищ, имеющих различное, но в любом случае не тканевое строение. Ученые и обыватели многие века принимали спороносные структуры слизевиков за плодовые тела грибов. Ситуация изменилась в 1820-е годы, после того, как выдающийся миколог Элиас Магнус Фриз забыл в лесу свою шляпу-цилиндр, в которую он для сохранности положил незрелое плодовое тело слизевика. Вернувшись за шляпой вечером, Фриз обнаружил, что странный гриб... выполз на поля цилиндра, где, наконец, замер и созрел. То, что казалось плодовым телом скрытой в толще земли грибницы, было спороношением гигантского подвижного существа! Когда же Антон де Бари в 1858 году прорастил в лаборатории споры слизевика и обнаружил, что из них выползают крохотные амебы, стало ясно, что слизевики имеют не больше отношения к грибам, чем киты к рыбам. Плодовые тела слизевиков могут формироваться двумя различными способами. Путь агрегации предполагает, что свободные клетки, напоминающие обычных амеб, собираются в тесные группы, так называемые псевдоплазмодии (рис. 2, а, б). Зрелый псевдоплазмодий ведет себя как единый многоклеточный организм: поддерживает постоянную форму, целенаправленно перемещается по субстрату, и в конце концов, в результате довольно сложного «эмбриогенеза», формирует конструкцию типа «шарик на ножке» — собственно плодовое тело. Псевдоплазмодии и плодовые тела не развиваются из одной клетки-предшественницы, как тела многоклеточных организмов, а являются временными объединениями генетически разнокачественных особей. При этом, в ходе онтогенеза плодовых тел некоторые амебы могут целенаправленно приноситься в жертву, поскольку ножка, состоящая из мертвых клеток, прочнее, чем «живая». Такая стратегия — американский биолог Джеймс Кавендер (James Cavender) в шутку назвал ее «коммунистической» — сближает ее обладателей с истинно многоклеточными организмами. Слизевики, которым свойственна агрегация и псевдоплазмодии, традиционно называют клеточными. Второй путь развития, плазмодиация, позволяет получить сложно устроенное плодовое тело из одной-единственной микроскопической амебы. Правда, для этого ей приходится стать макроскопической, разрастаясь, но не делясь. В результате образуется плазмодий (рис. 2, в, г), гигантская многоядерная амеба, которая может покрывать площадь до 1 м2, быть до 5 м в длину и весить до 20 кг (у слизевика Brefeldia maxima). Большинство плазмодиев, конечно, не столь огромны, но достаточно крупны, чтобы в Латинской Америке их употребляли в пищу. При этом плазмодий является типичной эукариотической клеткой, имеющей, правда, миллионы ядер, исключительно мощный цитоскелет и сложную систему циркуляции цитоплазмы. Достигнув определенных размеров, плазмодий переходит к формированию плодовых тел. Будучи одноклеточным, он не может пожертвовать частью клеток для построения вспомогательных структур. Поэтому все компоненты плодового тела, кроме спор, образуются из отложений полисахаридов (в основном — ?-1,4-галактозаминогликана, см. гликозаминогликаны), которые накапливаются на поверхности плазмодия или внутри цистерн его эндоплазматической сети. У некоторых видов небольшое количество спороподобных клеток может остаться в ножке, но это скорее случайность, чем целенаправленная стратегия. Слизевики, которым свойственна плазмодиация, обычно называют плазмодиальными. Клеточные слизевики бывают очень разными Как видим, стратегии агрегации и плазмодиации имеют между собой мало общего. Поэтому биологи давно предполагали, что клеточные и плазмодиальные слизевики неродственны друг другу. В 1970-е годы выяснилось еще одно обстоятельство: стратегия клеточных слизевиков возникала в ходе эволюции неоднократно, у самых разных организмов (L. S. Olive, 1970. The Mycetozoa: a revised classification). Сегодня мы знаем, что этот экстравагантный путь развития практикуют минимум шесть неродственных групп. Среди них диктиостелиды и копромиксиды относятся к супергруппе Amoebozoa и состоят в родстве с обыкновенной амебой из школьного учебника, фонтикулиды принадлежат к Opisthokonta и считаются близкой родней настоящих грибов, а акразиды относятся к Discoba и состоят в отдаленном родстве с эвгленами и трипаносомами (см. Случайно открытый жгутиконосец обновляет систему эукариот, «Элементы», 06.02.2018). Пятая группа, освоившая агрегацию — это, как ни странно, инфузории (супергруппа Alveolata), правда среди них плодовые тела образует лишь один вид, Sorogena stoianovitchiae (см. S. Sharpe et al., 2015. Timing the origins of multicellular eukaryotes through phylogenomics and relaxed molecular clock analyses). Наконец, агрегация с образованием плодовых тел широко распространена у миксобактерий — прокариотов из отдела Proteobacteria. Подвижные «псевдоплазмодии» этих организмов, так называемые швармы, способны лизировать и поедать других бактерий. Однако миксобактерии не способны к фагоцитозу, что исключает их из перечня «классических» слизевиков. Из вышесказанного следует важный вывод: путь развития, характерный для клеточных слизевиков — не экзотическая эволюционная случайность, а вполне обычная и успешная стратегия, неоднократно применявшаяся самыми разными организмами. Тут уместно заметить, что мицелиальное строение независимо «изобрели» лишь две таксономические группы (настоящие и ложные грибы), а многоклеточность животного типа, судя по всему, вообще возникла на Земле всего один раз (см., например: С. Ястребов, 2016. Кембрийский взрыв). Таким образом, появление клеточных слизевиков — событие более закономерное, чем появление животных. Плазмодиальные слизевики: три, две или шесть групп? А что же плазмодиальные слизевики? Сколько раз в ходе эволюции возникала их жизненная стратегия? До недавнего времени биологи выделяли три группы плазмодиальных слизевиков: миксомицеты, протостелиды и плазмодиофориды. Последнюю группу можно считать слизевиками лишь с большой натяжкой: они являются внутриклеточными паразитами растений и грибов (не вполне «наземный» образ жизни), а их «плодовые тела» представляют собой комочки склеенных спор или просто аморфную споровую массу. Так что в дальнейшем мы будем считать, что истинными плазмодиальными слизевиками являются только миксомицеты и протостелиды. Протостелиды имеют очень мелкие плодовые тела, состоящие из 1–8 спор и субтильной неклеточной ножки (рис. 3). По большому счету, это просто цисты амеб, приподнятые над субстратом на стебельках (так у нее больше шансов быть подхваченной ветром). Но в отличие от обычных амеб, один плазмодий простостелид образует множество плодовых тел, от десятков до тысяч. Кроме того, часть цитоплазмы, не попавшая в споры, может быть использована для построения крупных и красивых «подставок», так называемых спороносных рожек, на поверхности которых развиваются многочисленные плодовые тела. Это можно наблюдать у обычной в лесах Евразии церациомиксы кустарничковой — Ceratiomyxa fruticulosa (рис. 3, в). Миксомицеты, в отличие от протостелид — существа с очень сложной морфологией. Каждое их плодовое тело содержит от сотен до миллионов спор и включает многочисленные вспомогательные структуры (рис. 4), о которых мы подробнее расскажем ниже. Плазмодии миксомицетов также могут распадаться на зачатки мелких плодовых тел (впрочем, не столь мелких, как у протостелид), но у многих видов фаза распада сокращается или полностью выпадает, и тогда весь плазмодий превращается в одно крупное плодовое тело, от одного до десятков сантиметров в диаметре. Такое плодовое тело можно наблюдать, к примеру, у ретикулярии дождевиковой (Reticularia lycoperdon). Свидетельства в пользу родства миксомицетов и протостелид появились уже давно. В первой половине XX века единственную известную на тот момент протостелиду, вышеупомянутую церациомиксу, считали «экзоспоровым миксомицетом», принимая ее многочисленные плодовые тела за споры, образующиеся на поверхности одного плодового тела. В 1967–1975 годах Линдси Олайв и Кармен Стоянович из Университета Северной Каролины описали множество микроскопических протостелид, создали для них класс Protostelia (=Protosteliomycetes) и перенесли в него церациомиксу (L. S. Olive, 1970. The Mycetozoa: a revised classification). Вместе с миксомицетами и клеточными слизевиками из класса диктиостелид, протостелиды образовали тип Eumycetozoa, «настоящие слизевики». В 1990 году профессор Арканзасского университета Фредерик Шпигель (Fredrerick W. Spiegel) показал, что два рода протостелид — протоспорангиум (Protosporangium) и кластостелиум (Clastostelium), образующие отряд Protosporangiida, — демонстрируют явное сходство с миксомицетами. Само собой, возникло предположение, что миксомицеты произошли от протостелид (F. W. Spiegel, 1990. Phylum Plasmodial Slime Molds, Class Protostelida). Все изменилось, когда в 2009 году Лора Шедвик (Lora Shadwick) с соавторами, среди которых был и Фредерик Шпигель, опубликовали результаты молекулярно-филогенетического анализа последовательностей гена рРНК малой субъединицы рибосомы 17 видов протостелид. Выяснилось, что протостелиды вообще не образуют монофилетическую группу, а представляют собой минимум шесть независимых линий, относящихся к разным, зачастую очень удаленным друг от друга ветвям супергруппы Amoebozoa (L. L. Shadwick et al., 2009. Eumycetozoa = Amoebozoa?). Амебы, обитающие на поверхности лесной подстилки, много раз «изобретали» ножку для приподнимания спор над субстратом, что в глазах таксономистов автоматически превращало их в протостелид. Таким образом, стратегия плазмодиальных слизевиков также оказалась довольно обычным, неоднократно возникавшим явлением. К середине 2010-х класс протостелид распался, а его представители нашли свое место в системе «обычных» (неплодоносящих) амеб. Однако отряд Protosporangiida, сходство которого с миксомицетами ранее отметил Шпигель, равно как и церациомикса, неожиданно нарушили общее правило, действительно оказавшись близкими родственниками миксомицетов (S. Kang et al., 2017. Between a Pod and a Hard Test: The Deep Evolution of Amoebae). К 2019 году было твердо установлено, что состав группы Eumycetozoa (настоящих слизевиков) ограничен отрядом Protosporangiida (рода протоспорангиум и кластостелиум), церациомиксой, миксомицетами и диктиостелидами. Все эти организмы относятся к ветви Evozea (до 2017 года она называлась Conosa) в составе супергруппы Amoebozoa. Их родственниками в составе Evozea являются энтамебы (включая дизентерийную амебу), мастигамебы, пеломиксиды, вариозеи и ряд других классических амеб (S. M. Adl et al., 2018. Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes). Дмитрий Леонтьев Источник: m.vk.com Комментарии: |
|