Когда цифровизация не в радость: 5 громких скандалов вокруг Big Data и Machine Learning |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту Архив новостей ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2020-02-10 13:06 Цифровизация не всегда приносит только положительные результаты: увеличение прибыли, сокращение расходов и прочие бонусы оптимизации бизнеса. Большие данные – это большая ответственность, с которой справится не каждый. В этой статье мы собрали 5 самых ярких событий ИТ-мира за последнюю пару лет, связанных с большими данными (Big Data) и машинным обучением (Machine Learning), которые вызвали неоднозначную реакцию и даже осуждение общественности. В декабре 2019 года автомобильная компания Mazda отозвала сообщила о дефекте в интеллектуальной тормозной системе своих 35 390 машин 2019 и 2020 модельного года, отозвав несколько десятков тысяч автомобилей. Из-за программных ошибок авто Mazda3 четвертого поколения может обнаружить несуществующий объект на своем пути и автоматически начать экстренное торможение во время вождения. Такое поведение машины дезориентирует водителя и может привести к столкновению с транспортным средством, едущим сзади. Предполагается, что устранить этот дефект поможет переустановка новой версии программного обеспечения [1]. Эта непредумышленная ошибка Machine Learning пока не привела к смертельным авариям, в отличие от преднамеренных преступлений на почве машинного обучения, случившихся в США в 2016-2019 гг. Тогда в рамках преступного сговора разработчиков программного модуля для врачей с производителем опиоидных препаратов для лечения боли электронная система поддержки принятия клинического решения выдавала ошибочные рекомендации. Это привело к существенному повышению смертности из-за передозировок наркотическими и опиоидными препаратами. Причем речь идет не о наркоманах «со стажем», а о людях, получающих специфическую терапию в лечебных целях и ранее никогда не принимавших опиоиды [2]. Этот случай в очередной раз показывает, что цифровизация, Big Data и Machine Learning – всего лишь высокотехнологичные инструменты, которые могут использоваться в том числе и в неблаговидных целях. Наиболее критичные факапы в области больших данных за последнюю пару лет связаны с информационной безопасностью. Причем сейчас мы говорим не столько про утечки данных, сколько про их неправомерное использование. Несмотря на законодательные меры, в частности, введение GDPR в 2018 году, о чем мы подробно рассказывали здесь, даже крупнейшие data-driven компании нелегально обрабатывают персональные данные своих пользователей. Например, соцсеть Facebook считают причастной к компании Cambridge Analytica, собравшей личные данные 50 миллионов пользователей в целях построения ML-моделей результатов президентских выборов в США. В связи с этим Facebook была оштрафована на Федеральной комиссией США по торговле на 5 миллиардов долларов и потеряла еще 40 миллиардов на падении акций [3]. Также Facebook замечена в других инцидентах с персональными данными своих пользователей и оштрафована в октябре 2018 г. в Великобритании на 500 тысяч фунтов стерлингов, что составляет более 620 тысяч долларов. А в 2019 году в Италии на 1 миллион евро за утечку пользовательских данных была наказана в Италии [4]. Другой крупный скандал, связанный с Machine Learning, Big Data и большими деньгами также случился в 2019 году. Напомним, тогда с помощью технологии Deep Fake злоумышленники успешно имитировали голос руководителя фирмы, заставив замдиректора перевести на их счет около 220 тысяч евро. Такое неправомерное применение нейросетей и открытых данных о публичных персонах позволяет создать фейковые аудио и видеозаписи с их участием, что может привести к социальным, финансовым и политическим рискам. Кроме того, Deep Fake опасен для биометрических систем, которые активно внедряются в различные государственные сервисы. В заключение отметим громкий инцидент с повсеместным внедрением Big Data проекта распознавания лиц на улицах Москвы и в метро. Помимо положительных результатов (поиск пропавших граждан и преступников, выявление криминогенных мест и точек сбора нелегальных мигрантов), такая система может использоваться для слежки за гражданами – как со стороны властей, так и самих правонарушителей. В частности, есть реальные примеры, когда записи с уличных видеокамер городского видеонаблюдения продавались на черном рынке, а доступ к самим камерам не слишком защищен с технической точки зрения. Почему это опасно, мы рассказывали в этой статье. Здесь также имеют место случаи с фотографиями невинных граждан, ошибочно попавшими в базу преступников. В частности, так в 2018 году в Москве был задержан молодой человек, возвращавшийся с концерта и не совершавший неправомерных действий. Против внедрения системы распознавания лиц на городских улицах уже подано несколько судебных исков, но пока все они отклонены. Более того, московская цифровизация задает тренд другим городам России: подобные системы распознавания на базе Big Data и Machine Learning уже вводятся в Калуге, Тюмени, Екатеринбурге и Белгородской области [5]. Как безопасно вести проекты больших данных и машинного обучения, чтобы цифровизация не превратилась в скандал и принесла бизнесу пользу, вы узнаете на наших образовательных курсах в лицензированном учебном центре обучения и повышения квалификации ИТ-специалистов (менеджеров, архитекторов, инженеров, администраторов, Data Scientist’ов и аналитиков Big Data) в Москве: Источники Источник: www.bigdataschool.ru Комментарии: |
|