Слепнущие нейросети |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту Архив новостей ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2020-01-21 20:00 31 октября на Международной конференции по компьютерному зрению в Сеуле (ICCV 2019) было представлено исследование «Что не может создать GAN (генеративно-состязательная сеть)». Дэвид Бау, сотрудник Лаборатории компьютерных наук и искусственного интеллекта (CSAIL) Массачусетского технологического института, вместе с коллегами исследовали характеристики данных, которые чаще игнорируются системой машинного обучения. GAN и другие нейронные сети не только похоже обнаруживают шаблоны в данных, они также могут игнорировать схожие объекты. Бау и его коллеги обучали различные типы GAN на изображениях объектов внутри и снаружи зданий. Независимо от того, где были сделаны снимки, GAN постоянно опускала важные детали: людей, машины, вывески, фонтаны и предметы мебели, даже когда эти объекты заметно выделялись на изображении. В процессе работы исследователи отметили также, что люди на изображениях могли исчезать выборочно. Иногда они превращались в кусты, а порой и вовсе растворялись в зданиях на заднем плане изображения. Извини, человек, мне лень Ученые предположили, что виной всему «лень» алгоритмов. Хотя целью GAN является создание убедительных образов, она может выучить, что легче воспроизводить здания и ландшафты и системно пропускать более трудные объекты, например, людей и автомобили. Ведь создать реалистичное человеческое лицо тяжело, и это получается редко. А за нереалистичные изображения GAN получает штраф — такова природа генеративно-состязательного обучения, в котором одна сеть должна убедить другую, что изображение хорошее. В итоге генеративная часть сети решает «не связываться» с этими сложными объектами и просто убирает их. Исследователи давно знают, что GAN имеют склонность игнорировать некоторые статистически значимые детали, им легче генерировать здания и ландшафты, ?упуская более мелкие детали. Но это может быть первым исследованием, которое покажет, что современные GAN могут систематически опускать целые классы объектов в изображении. Поскольку инженеры используют GAN при создании синтетических изображений для обучения автоматизированных систем, таких как беспилотные автомобили, существует опасность того, что люди, знаки и другая важная информация могут оказаться в «слепом пятне». Поэтому важно не только оценивать результат работы нейросети, но и понимать, как устроена сама модель. Источник: m.vk.com Комментарии: |
|