Очень большое страхование

МЕНЮ


Искусственный интеллект
Поиск
Регистрация на сайте
Помощь проекту

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости

Новостная лента форума ailab.ru


Большие данные и машинное обучение постоянно присутствуют в новостях. Мы постоянно слышим о том, что эти технологии несут революционные изменения в нашу жизнь. Однако в некоторых областях революция все время откладывается. Страховые компании (если верить недавнему отчету IDSA) относятся именно к скептикам. Они не стремятся сломя голову имплементировать в свои процессы большие данные и машинное обучение. Но процесс этот все равно идет. Совместно с партнером этого материала, компанией «Ингосстрах» и ее экспертами, мы выясняли, в каких областях страхования большие данные уже используются, в каких могут использоваться и какие препятствия стоят на этом пути.

Что такое страхование

Страхование как идея насчитывает очень много лет — то, что в человеческой жизни присутствует риск, влияющий на финансовые ситуации, понимали уже в Древнем Вавилоне. В законах Хаммурапи (1750-е годы до нашей эры) говорится):

«Если кто-нибудь будет иметь на себе процентный долг, а Рамман затопит его поле, или наводнение унесет жатву, или вследствие засухи в поле не вырастет хлеба, то он не обязан возвращать в этом году хлеб заимодавцу и смывает свой документ; он не обязан отдавать и проценты за этот год».

Перевод Бориса Тураева

В Древнем Риме (I тысячелетие до нашей эры) возникла концепция бодмерея — займа, получаемого моряком, собирающимся в путешествие. Так как торговые экспедиции были опасны, в случае потери судна и груза заимодатель не мог требовать возврата долга. Но если экспедиция была успешной, то процент с такого займа был выше, чем с обычного. Похожие законы были и у средневековых торговых гильдий.

В XVII веке Эдмунд Галлей, тот самый первооткрыватель кометы Галлея и многих законов физики, заложил основы актуарных расчетов в страховании жизни. В частности, он составил первую таблицу смертности, обнаружив любопытный факт: средняя продолжительность жизни в его время составляла 26 лет, в то время как медианная — 8 лет (то есть вероятность не дожить до 8 и вероятность прожить больше 8 лет была примерно одинаковой).

Полноценное страхование жизни и имущества возникло в начале XVIII века, хотя в некоторых местах даже раньше — например, в Лондоне дома начали страховать спустя несколько лет после Большого пожара 1666 года. В южной части Европы страны задумались о страховании после землетрясения 1755 года, почти полностью уничтожившего Лиссабон.

Наконец, позиции страхования как важной составляющей современной жизни окончательно утвердились в ходе военных конфликтов как в Европе, так и в колониях в конце XVIII — начале XIX века. Вскоре в Германии, не без участия Отто фон Бисмарка, появилась социальная система страхования жизни, здоровья, пенсии (подробнее про историю страхования можно прочитать в этой заметке от Swiss Re, посвященной 150-летию компании).

В XX веке страхование стало полноценной индустрией во многом благодаря развитию математических методов, стоявших за созданием подходящих математических моделей. Основной инструментарий, применяемый в страховании, это математическая статистика и теория вероятностей.

Например, тот факт, что в таблице Галлея оказались две настолько разные величины, казался его современникам парадоксом, пока не появилась математическая статистика с ее понятием медианы — это значение с условием, что ровно половина элементов выборки больше его и ровно половина — меньше.

Страхование автомобиля

Если совсем грубо, то работа страховой компании устроена следующим образом. Компания берется страховать клиента. Она получает от него некоторый набор информации — обычно это не очень длинная анкета.

Сведения из анкеты дополняются внутренней информацией компании — данными, собранными самой компанией, либо полученными иными способами (скажем, при проверке каких-то справок или документов), предусмотренными законом. Дальше на основании собранной информации и математических моделей вычисляется размер тарифа и сумма премии по договору с учетом оценки степени риска.

Если речь идет о страховании автомобиля, то, например, «Ингосстраху» для оформления полиса достаточно совсем простой информации: марка машины, пробег, возраст водителя и так далее. На основании этих данных и вычисляется непосредственная стоимость страховки в рублях.

Однако сейчас страховые компании для большей персонализации условий страховки предлагают клиентам воспользоваться возможностями телематики. Это совокупность технологий, которая позволяет отслеживать движение автомобиля. И если логистическим компаниям телематика нужна для оптимизации и автоматизации работы автопарка, то страховым - помогает следить за поведением автомобилиста на дороге.

Страхование автомобиля — это та область, где, как кажется, страхование наиболее близко подошло максимуму пользы от использования больших данных (если верить отчету AIOPA).

Водитель на дороге

Первое направление, о котором идет речь, это анализ поведения водителя на дороге. Грубо говоря, идея такова: страховые компании собирают или покупают большие данные о том, как ведут себя водители. С помощью статистического анализа в данных о поведении находятся взаимосвязи, потенциально позволяющие узнать довольно много о водителе, автомобиле и типе вождения.

Например, американская компания LexisNexis предложила новую систему классификации для автомобилей. Дело в том, что сейчас в автомобилях используется много разных систем безопасности, а также разные типы круиз-контроля. Чтобы учитывать их наличие при расчете страховки, используется тот самый анализ больших данных, позволяющий перевести все это техническое многообразие на язык страховщиков.

Еще одна, правда, пока потенциальная история — это возможность предсказания страховых случаев. Есть работы, обосновывающие возможность использования больших данных для получения прогнозов.

Правда, речь идет не про конкретных людей, а про статистику в целом. Грубо говоря, глядя на данные по пулу водителей, можно понять, что у кого-то из них скоро произойдет авария, но нельзя сказать у кого конкретно.

Документооборот и управление рисками

Большие данные могут помочь более эффективно оценивать риски.

Действительно, каждый клиент оставляет страховщику не слишком много сведений о себе. Используя инструменты больших данных, эту информацию можно эффективно дополнять, классифицируя клиентов в целом.

Еще одна задача, для решения которой, правда, потребуются нейросети и машинное обучение, — это организация автоматического документооборота, включающего предварительный анализ претензий на фрод. Такого рода разработки уже ведутся, и есть несколько стартапов, предлагающих свои услуги страховым компаниям (например, MarkLogic)

Страхование здоровья и имущества

Еще одно направление, где нашли себе применение большие данные, — это страхование здоровья. В частности, в США сразу несколько стартапов пытаются перепридумать рынок страхования здоровья (в Америке этот рынок — предмет постоянного общественного спора, поэтому появление таких компаний именно там закономерно).

Например, стартап из Нью-Йорка Oscar Insurance собирает о своих пользователях информацию, потенциально позволяющую им в реальном времени контролировать свое состояние.

По мнение создателей компании, для страховщика выгоднее предотвратить какой-то страховой эпизод, чем потом выплачивать деньги или разбираться со страховой претензией.

Генеральный директор Oscar Insurance Марио Шлоссер приводит пример: его сотруднику удалось обнаружить, что один из их клиентов, страдающий диабетом, не разместил вовремя заказ на инсулин (заказы также мониторятся). Сотрудник компании напомнил клиенту об этом, и страховой случай был предотвращен.

Еще один пример — компания Hippo, уже ставшая «единорогом» (это значит, что ее текущая капитализация превысила миллиард долларов). Основная идея здесь очень похожая, только компания собирает данные с разных домашних — включая «умные» — устройств.

В результате формируются паттерны, за которыми следят нейросети, генерирующие сообщения, если вдруг, например, вы не закрыли дверь гаража, хотя обычно в это время вы, выехав из дома на машине, эту дверь закрываете.

Интересно, что благодаря постоянному сбору данных Hippo обладает возможностью застраховать даже отдельные домашние устройства — например, умную колонку, телевизор или холодильник. Данные для страхования собираются с помощью интернета вещей.

Заключение

Легко заметить, что большинство перечисленных случаев использования IT-технологий в страховании далеки от революционных.

В рамках подготовки доклада IDSA были проведены анонимные интервью с лидерами отрасли. В результате выяснилось, что страховщиков смущает ненадежность технологий, а также тот факт, что использование новых моделей работы с информацией — например, дополнение анкеты с помощью больших данных — требует серьезного переосмысления процессов.

Но, несмотря на консервативность отрасли, подвижки к модернизации есть, причем не только за рубежом, но и в России.

Так, например, в «Ингосстрахе» уже большое внимание уделяют работе с данными, то есть бизнес понимает всю важность этой работы и разрабатывает новые эффективные методики использования больших данных.

Однако пока выгода от имплементации новой технологии, к сожалению, не так очевидна, чтобы это переосмысление стало повсеместным трендом.

Андрей Коняев


Источник: nplus1.ru

Комментарии: