Нейросеть сегментирует объекты на видеозаписи без размеченных данных

МЕНЮ


Искусственный интеллект
Поиск
Регистрация на сайте
Помощь проекту

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


COSNet — это нейросетевая модель для unsupervised сегментации объектов на видео. Исследователи используют механизм глобального со-внимания, чтобы вычленить корреляцию между кадрами видеозаписи. COSNet обходит текущие state-of-the-art подходы в задаче unsupervised сегментации объектов на видеозаписи. Предыдущие подходы фокусировались на том, чтобы выучивать представления объектов переднего плана по движениям на коротких промежутках времени. 

Слои со-внимания в COSNet захватывают глобальные корреляции и контекст сцены. Это возможно благодаря тому, что со-внимание считается совместно и объединяется в единое пространство признаков. COSNet обучалась на парах видеокадров, что позволило естественно расширить обучающую выборку. На этапе сегментации модель со-внимания кодирует необходимую информацию через обработку нескольких кадров одновременно. Такой способ обучения позволяет модели лучше запоминать часто встречающиеся объекты на переднем плане. Исследователи предлагают унифицированный end-to-end фреймворк с разными вариациями со-внимания.

Концепт со-внимания

Получая на вход кадр, механизм со-внимания заимствует информацию из нескольких реферальных кадров. Это необходимо, чтобы более точно определить объекты переднего плана. 

Пример работы механизма со-внимания: d — реферальные кадры, b — входной кадр, a — выделенный с помощью механизма со-внимания объект, c — результат без использования со-внимания

Архитектура нейросети

COSNet основывается на архитектуре сиамской нейросети. Внутри сиамской нейросети заложен модуль со-внимания. Со-внимание кодирует корреляции между кадрами. Это позволяет модели аттендиться (фокусировать внимание) на связных частях кадра, чтобы затем определять объекты на переднем фоне. 

На вход модели поступает пара кадров, которые отправляют в модуль извлечения признаков. Затем механизм со-внимания считает внимание для двух представлений кадров. Выход модуля со-внимания конткатенируется, чтобы в итоге выдать сегментированные объекты.

Составные части COSNet
Схематическая иллюстрация COSNet на этапах обучения и тестирования

Тестирование модели

Исследователи проверили модель на трех датасетах для unsupervised видео сегментации: DAVIS16, FBMS и YoutubeObjects. Ниже можно сравнить результаты COSNet и альтернативных подходов на датасете YoutubeObjects. В среднем COSNet более точно сегментирует объекты разных классов по сравнению с остальными подходами.  

Сравнение качества сегментации с помощью разных моделей на датасете YoutubeObjects

Источник: neurohive.io

Комментарии: