Групповой отбор

МЕНЮ


Искусственный интеллект
Поиск
Регистрация на сайте
Помощь проекту

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


Отрывок из книги «Эусоциальность» Эдварда Уилсона рассказывает о происхождении развитых сообществ животных, основанных на сотрудничестве.

Биологи изучили 0,5 млрд лет эволюции жизни на суше в поисках данных о сложных сообществах животных. Мы попытались использовать эти знания, чтобы лучше понять наш собственный вид. Но нас поставила в тупик одна большая генетическая загадка.

Загадка эта состоит из двух частей. Первая: как могут эволюционировать сложные сообщества, если множество особей, служащих сообществу, перестают размножаться? Переформулируем в более знакомых нам терминах: как появился альтруизм? На основе предложенного Дарвином решения уже в наши дни была создана теория группового отбора. Согласно этой теории, некоторые члены группы могут снижать продолжительность жизни или лишаться репродуктивных возможностей (или и то и другое), если эти жертвы обеспечивают их группе преимущества перед другими конкурирующими группами. Далее ген альтруизма распространяется в группе посредством мутаций и отбора. Процесс ускоряется за счет близкого родства среди членов группы, но не является его причиной. Близкое родство часто следует за альтруизмом, но не предшествует ему. Модели популяционной генетики показывают, что в среднем наличие в группе хотя бы одного наследственного альтруиста, независимо от того, приходятся ли члены группы друг другу родственниками, приводит к росту популяции в целом.

И здесь мы подходим ко второй загадке. Почему возникновение эусоциальности, обеспечивающей основанное на альтруизме разделение труда, было столь редким событием в эволюции? Ответ должен находиться где-то в области главной предпосылки ее возникновения: необходимо укрепленное гнездо и мать или небольшая группа взрослых особей, выращивающие в нем молодняк. Это явление в природе встречается очень часто, однако в большинстве случаев почему-то не приводит к появлению эусоциальности. Потому более уместным будет такой вопрос: каков последний шаг? Знание о том, что не дает многим видам перейти к эусоциальности, могло бы помочь решить вторую часть загадки.

Я полагаю, что решение заключается в огромной биологической сложности, присущей этому последнему шагу. Возьмем небольшую колонию, состоящую из матери (возможно, отца, также участвующего в работе) и ее потомства, только что достигшего зрелости. Обычно жизненный цикл заканчивается здесь. Новый жизненный цикл начинается с того, что мать расстается со своими потомками женского пола, которые переходят к самостоятельной жизни. Мать либо умирает, либо начинает новый выводок, а ее потомки спариваются и приступают к строительству своих гнезд, сами становясь матерями.

Теперь предположим, что в нашем гипотетическом сценарии возникает небольшая нокаутная мутация, изменяющая всего один ген и препятствующая разделению семьи. (Нокаутные мутации, отменяющие другие мутации, возникают сравнительно часто и широко используются в генетических исследованиях.) Мы знаем, что в группе взрослых самок, содержащихся вместе в ходе эксперимента, та из них, что оплодотворена первой (другими словами, мать), будет доминировать в группе и откладывать яйца, а остальные возьмут на себя роль рабочих.

Таким образом, при наличии предварительной адаптации, состоящей в сооружении укрепленного гнезда и постоянной заботе о потомстве, эволюционировать еще на один шаг и перейти к эусоциальности будет уже, в принципе, несложно. Но, хотя с виду такой переход и кажется простым, в природе он происходил редко. Почему? Само собой напрашивается следующее объяснение: хотя мутация одного гена или их небольшого набора может привести к появлению эусоциальной колонии, весь остальной геном остается адаптированным к одиночному существованию. Дочери могут подчиниться инстинкту, не покидать гнездо и вести себя как рабочие особи, но во всем остальном они запрограммированы на то, чтобы жить как отдельные организмы. Они не готовы общаться между собой или участвовать в разделении труда по строительству гнезда, уходу за молодняком и добыче пищи. С таким багажом группа не может эффективно конкурировать ни с одиночными соперниками, ни с колониями других, более успешных эусоциальных видов.

Сейчас мы располагаем обширными сведениями о фундаментальных генетических изменениях, обуславливающих развитие эусоциальности. В 2015 г. международный коллектив из 52 исследователей под руководством Карен Капхейм и Джина Робинсона из Иллинойсского университета опубликовал данные о геноме 10 видов пчел, относящихся к 10 независимым линиям и находящихся на различных этапах эволюции. У всех развитие общественного поведения начинается с одиночного существования и заканчивается комплексной эусоциальностью. Выяснилось, что у каждой линии был свой путь генетической эволюции, но все, кто достиг эусоциальности, демонстрировали общую модель изменений. У всех явно увеличен объем нейтральной эволюции как следствие ослабления естественного отбора, происходящего при повышении сложности общественной организации, чему также сопутствует уменьшение разнообразия и изобилия передаваемых элементов. Если упростить вопрос, насколько это вообще возможно, то можно сказать так: развитие социальной организации связано с повышением сложности генных сетей, влияющих на социальное поведение. Развитое общественное поведение приводит к базовым изменениям в генетическом коде.

В 1950-х гг. британский энтомолог Майкл Брайен и я, независимо друг от друга, описали тонкий механизм, влияющий на развитие личинок муравьев и приводящий к появлению рабочих и репродуктивных особей, а значит, и к возникновению эусоциальности. У европейского вида Myrmica ruginodis Брайен обнаружил следующее: каждая личинка может стать или королевой, у которой более крупное тело, есть крылья и полностью развитые яичники, или рабочей особью — более мелкой, бескрылой и стерильной. Имеется определенный пороговый размер — «точка принятия решения», перейдя которую, личинка заканчивает рост и метаморфоз как взрослая королева или взрослая рабочая особь. Брайен обнаружил, что судьба развивающейся личинки Myrmica (превращение ее в королеву или рабочую особь) зависит от комбинации нескольких факторов, а именно: размер яйца, из которого вылупилась личинка; размер, которого она достигает в определенной точке своего развития; наличие или отсутствие королевы в колонии, а также ее возраст; наличие или отсутствие в жизненном цикле молодой личинки зимнего периода, когда она может подвергаться охлаждению перед началом быстрого роста весной. Взятые вместе, эти факторы обеспечивают колонии пополнение из девственных королев, которые при наступлении теплой погоды отправляются в брачный полет. Каждая из них после спаривания может основать собственную колонию.

Много позже, в 2002 г., Эхаб Абухейф и его коллеги из Университета Макгилла (Монреаль, Канада) исследовали геном муравьев и обнаружили, что появление крылатых королев зависит от модификации генов, носителями которых являются женские особи. Генная сеть, влияющая на ход развития особи, у крылатых королев сохраняется, но нарушается у касты бескрылых рабочих. Говоря короче, рабочая особь теряет часть своего генетического потенциала.

Очень многое теперь встало на свои места. В 1953 г. я исследовал все известные 49 родов муравьев, у которых имеется более одной подкасты рабочих — мелких и крупных рабочих особей, последних иногда называют солдатами. У многих из этих видов также есть рабочие особи среднего размера, а у некоторых — более крупная каста суперсолдат. При становлении сложной общественной организации для дополнительных подкаст необходимы не только одна или несколько точек принятия решения в процессе развития личинки, но и регуляция численного состава представителей подкаст на различных этапах роста колонии.

Такая регуляция подобна разделению труда у людей, основанному на существовании разных профессий и культурном нормировании численности людей, обучающихся каждой из профессий.

Так появились империи муравьев и людей.

Единственный способ получить нужные генетические изменения и преодолеть порог одиночного существования — это групповой отбор, способный привести к появлению между членами группы разделения труда и кооперации, основанных на генах альтруизма. Этот более высокий уровень естественного отбора — научно доказанная и доступная для прямого наблюдения сила, действующая среди муравьев и прочих общественных насекомых не только на этапе основания колонии, но и в процессе конкуренции между зрелыми колониями. Могут возникать конфликты, в результате которых проигравшая колония либо отступает, либо подвергается уничтожению. Однако конкуренция между колониями — это не только борьба и истребление. Сюда также входят захват кормовых угодий и изгнание или уничтожение конкурентов, а равно и развитие более продвинутых способностей по сбору пищи и материалов для строительства гнезд. Как показывают теоретические и экспериментальные исследования, все эти наследуемые способности, реализуемые на уровне колонии, главным образом зависят от темпов роста и размера зрелой колонии; и то и другое — определяемые генетически фенотипические признаки на уровне группы. При прочих равных условиях одна лишь численность рабочих особей оказывает огромное влияние на темп роста колонии. Чем больше рабочих, тем быстрее колония растет, тем больше производит королев и самцов, тем больше ее размер при достижении зрелости. Эти отношения похожи на метаболические законы масштабирования для массы и физиологии отдельных организмов. Согласно математическим моделям, наиболее важным демографическим фактором в процессе конкурентного роста колоний насекомых, скорее всего, является исходная плодовитость королевы, основавшей колонию.

Групповой отбор — это естественный отбор аллелей (альтернативных форм одного гена), предписывающих социальные признаки. Благоприятными для естественного отбора являются признаки, приводящие к взаимодействию особей в группах, в том числе собственно создание таких групп. Когда группы особей одного вида переходят к конкуренции, происходит отбор генов среди участников групп, что стимулирует социальную эволюцию путем естественного отбора

Здесь нам следует остановиться и рассмотреть процесс группового отбора с точки зрения принципов популяционной генетики, чтобы с их помощью корректно объяснить социальную эволюцию. Стоит выделить этот момент. Для признаков на уровне группы, как и для признаков на уровне индивида, единица отбора — это ген, предписывающий определенный признак. Целями естественного отбора, определяющего полезность или вредность генов, являются признаки, предписываемые этими генами. В группе индивид конкурирует с другими членами группы за пищу, половых партнеров и статус; таким образом, он вовлечен в естественный отбор на индивидуальном уровне. Индивиды, взаимодействующие с другими членами группы таким образом, что при этом усложняется ее организация (возникают иерархия, лидерство и кооперация), вовлечены в естественный отбор на уровне группы. Чем выше уплаченная альтруистом цена (за счет потерь в сфере выживания и размножения индивида), тем больше должна быть выгода для группы в целом. Эволюционный биолог Дэвид Слоан Уилсон (мы не родственники) отлично сформулировал правило для двух уровней отбора: в группах эгоистичные индивиды выигрывают у альтруистов, но группы альтруистов выигрывают у групп эгоистичных индивидов.

Сам процесс группового отбора в последние несколько лет активно изучают в естественной среде.

Начать следует с работ о волках Йеллоустонского национального парка, столь многому научивших нас в области экологии и социобиологии. Согласно недавним исследованиям, проведенным Кирой Кэссиди и ее коллегами из Университета Миннесоты, когда между группами волков возникает территориальный конфликт, более крупные стаи (со средней численностью 9,4 особей) одерживают верх над малочисленными (средняя численность — 5,8). Кроме того, выше вероятность победы той стаи, где больше доля взрослых самцов. И наконец, наличие в стае самца или самки в возрасте 6 лет или старше (средняя продолжительность жизни волка в Йеллоустоне — четыре года) еще больше влияет на баланс сил.

Чтобы увидеть групповой отбор в действии, а также в его максимальном разнообразии, обратимся к беспозвоночным. Кооперация и соперничество среди королев у красных огненных муравьев (Solenopsis invicta) — это изумительный пример, описанный в классической работе Уолтера Цинкеля «Огненные муравьи» (The Fire Ants, 2006). После брачного полета и оплодотворения в воздухе отдельные королевы нередко собираются в группы по десять и более особей, совместно строят небольшое гнездо, после чего, опять же совместно, растят свой первый выводок. Такое необычное поведение явно основано на групповом отборе. В мире неослабевающей и беспощадной конкуренции менее чем одна из тысячи королев доживает до того, чтобы стать матерью в достаточно многочисленной колонии, способной произвести на свет новых королев. По данным полевых исследований, размер колонии исключительно важен для ее выживания, и это особенно заметно в случае молодых колоний. В лабораторных условиях группы, где королевы действуют сообща, в среднем выращивают больше рабочих на одну королеву, чем группы с одиночными королевами.

Когда рабочие особи красных огненных муравьев достигают зрелости, они начинают уничтожать королев одну за другой, распластывая их по земле и жаля до смерти, пока в живых не останется только одна. Они не щадят даже собственных матерей. Победительницу определяют по феромонам — она наиболее плодовита, благодаря чему способна лучше других поддерживать быстрый рост колонии. Рабочие особи не могут себе позволить кормить «неудачниц», даже если это означает, что должны умереть их матери. В данном случае групповой отбор явно берет верх над индивидуальным.

Огромное разнообразие муравьев — в мире насчитывается более 15000 видов — делает их идеальным объектом для сопоставительных исследований в области социальной эволюции. Центральные вопросы таких исследований сводятся к следующим трем. Первый: кто или что контролирует численность рабочих в колонии? Второй: как действует этот процесс? Третий: какие силы естественного отбора здесь работают?

Технологии быстрого картирования ДНК открывают широкие возможности для анализа социальных факторов, работающих на уровне целых муравьиных колоний. Благодаря этим технологиям нам удалось многое выяснить о ведущей роли группового отбора в социальной эволюции этих насекомых. Известен следующий феномен: рабочие муравьи следят за тем, чтобы другие особи в гнезде не конкурировали с королевой (то есть не откладывали яйца). Они нападают на «нарушителей», жалят их, а могут и убить. Ранее феномен такого надзора объясняли в рамках теории совокупной приспособленности, основанной на степени родства между рабочими. Раньше было принято считать, что, в принципе, такие нападения проявляются тем сильнее, чем слабее родственная связь между возможными будущими узурпаторами и карателями. Однако это явление можно объяснить индивидуальными отличиями от общего для всей колонии запаха. Серафино Тесео, Даниэль Кронауэр и их коллеги из Рокфеллеровского университета недавно продемонстрировали, что рост эффективности колонии полностью объясняет это явление. Они обнаружили, что в колониях муравьев Cerapachys biroi, обитающих в тропиках и являющихся клональными (следовательно, рабочие особи в колониях генетически идентичны друг другу), также осуществляется такой надзор. Объяснение этого феномена мы находим в другой области биологии. Регуляция роста колонии привязана к циклам, которые индуцируют личинки. В ходе одной части цикла яичники взрослых особей прекращают работу в ответ на сигналы, посылаемые этими незрелыми, червеобразными представителями колонии. Те же особи, которые на эти сигналы не отвечают и нарушают ход цикла, подвергаются нападениям и даже могут быть убиты другими членами колонии. Ученые провели ряд оригинальных экспериментов, в ходе которых были собраны два вида безматочных колоний муравьев рода Cerapachys: одни были клонами, а другие — химерами (разные родители) двух генетически различных колоний, созданных в лабораторных условиях. Клональные колонии показывали лучшие результаты, чем химерные, — очевидно, потому, что химерные колонии производили больше особей, которые предпочитали размножаться, а не работать. Их деятельность нарушала нормальный ход репродуктивного цикла, следовательно, снижала эффективность всей колонии.

Еще одно — самостоятельное — исследование по этой теме провели Сигето Добата и Казуки Цюдзи из Университета Рюкю. Они использовали другой вид клональных муравьев, Pristomyrmex punctatus, и получили похожие результаты. Поскольку в колонии нет королевы, все рабочие участвуют в откладывании яиц и заботе о потомстве. Как и в случае с безматочными колониями Cerapachys, отдельная особь не получает никаких преимуществ от откладывания яиц. Все незрелые члены колонии генетически идентичны, все растут в едином эгалитарном сообществе. Каждая особь — потенциальная мать, а также точная копия всех прочих матерей. В природе в колонии проникают генетически отличные рабочие из других колоний. Эти чужаки откладывают больше яиц, чем хозяева колонии, и уклоняются от участия в работе. В лабораторных условиях такие «жулики» в среднем производят больше потомства (из расчета на одну особь). Когда же исследователи составляли группу, целиком состоящую из «жуликов», произвести потомство им не удавалось вовсе.

Какой вывод мы можем сделать на основании этого странного феномена? У муравьев рода Pristomyrmex родство имеет следующее значение: работающие матери в клональных колониях считают представителей других клональных колоний чужаками. Когда «жулики» проникают в гнезда других колоний, они ведут себя как социальные паразиты, эксплуатируя труд представителей другого вида. У птиц встречается похожее явление: кукушки подбрасывают свои яйца в гнезда птиц других видов.

В 2001 г. Патрик Эббот и его коллеги из Аризонского университета первыми сообщили о существовании похожего феномена у эусоциальных тлей. Исследуемый ими вид формирует высокоорганизованные колонии, в которых даже есть отдельная каста солдат. Они также являются клональными, следовательно, общественное устройство у них не определяется родством. По крайней мере у одного вида (Pemphigus obesinymphae) колонии не всегда являются чисто клональными, поскольку подвергаются вторжениям со стороны других клонов. Чужаки действуют как паразиты. Они не участвуют в опасных занятиях вроде защиты колонии хозяев. Вместо этого они ведут себя эгоистично и изменяют свою физиологию, становясь репродуктивными особями.

В социобиологических исследованиях, объединяющих естественную историю и генетику, подобные варианты жизненных циклов у социальных видов открываются все чаще. Один из наиболее примечательных и поучительных примеров репродуктивного поведения у социальных ос открыли Рагевендра Гадагкар и его коллеги из Индийского научного института в Бангалоре. Как удалось выяснить исследователям, колонии азиатских ос Ropalidia marginata, несмотря на внешнюю простоту их общественной организации, на самом деле имеют сложные правила кооперации. В колонии R. marginata рабочие особи физиологически способны к размножению, но все же подчиняются правящей королеве. Правит не самая агрессивная особь, она даже не стоит во главе некой иерархии подчинения. Тем не менее ей принадлежит полная монополия на откладывание яиц. Можно сказать, что в колониях R. marginata существует доброжелательная автократия. Если убрать из колонии королеву, одна из рабочих особей временно становится крайне агрессивной по отношению к сородичам. При этом ее агрессивные действия почти никогда не получают противодействия. Утвердившись у власти, новая королева вновь становится миролюбивой. У нее развиваются яичники, она начинает откладывать яйца и становится единственной репродуктивной особью в гнезде. Если же она погибает или ее удаляют из гнезда исследователи, на ее место приходит другая рабочая особь, которая, по-видимому, уже заранее номинирована на эту должность. Когда убирают и эту наследницу, ей на смену приходит другая, и так далее. Престолонаследие в колонии происходит более или менее мирно, согласно загадочным (для людей) правилам.

Оказывается, новая королева в колонии R. marginata не является наиболее близкой родственницей других рабочих. Как правило, это самая старшая из них. Вся процедура, судя по всему, регулируется умиротворяющими феромонами. Таким образом, престолонаследие является адаптацией на уровне колонии, которая приводит к почти полному устранению насилия и разрушительных конфликтов. Эта адаптация также снижает риск внутренней анархии и вторжения представителей других колоний. Поэтому колонии Ropalidia marginata теоретически бессмертны, хотя на практике — ввиду сложных условий внешней среды — срок жизни колонии почти всегда довольно короток.

Еще один, совершенно иной вид отбора был зафиксирован на уровне групп у отдельной линии примитивно-эусоциальных ос. У всех 19 видов в естественных условиях одинокие самки, по данным одного исследования, подвергались большому риску гибели и в гнездах, и во время сбора пищи. От 38% до 100% самок, основавших гнезда (в нескольких отдельных выборках), не доживали до появления первого выводка. В ходе другого исследования было обнаружено, что, когда в колониях двух видов ос — Liostenogaster fralineata и Eustenogaster fraterna — исчезают королевы, осиротевшие рабочие особи выращивают выводок до достижения зрелости, даже если между ними нет близких родственных связей. При этом рабочие сами откладывают яйца, давая начало собственным выводкам. Таким образом они обеспечивают «страховку» для всех кооперирующих особей.

По мере развития социобиологических исследований мы обнаруживаем все больше эволюционных тропинок; некоторые из них настолько удивительны, что кажутся фантастическими. Например, интересные аберрации встречаются у пауков. Специалисты, изучающие эусоциальность и предшествующие ей формы общественной организации, надеялись когда-нибудь обнаружить эусоциальных пауков. Науке известны социальные пауки, живущие в больших общих паутинах. Они относятся к двум отдельным филогенетическим линиям, но ни у одного вида не было обнаружено отдельных репродуктивных и рабочих каст.

Колония социальных пауков (Anelosimus) с добычей — крупным жуком; члены колонии разделят пищу между собой. Также показаны два типа «личности»: охотники (на заднем плане) и няньки, защищающие круглые коконы с яйцами

Однако обитатели таких гнезд-паутин демонстрируют различные «личностные» качества, судя по всему поддерживаемые групповым отбором. Этот феномен наблюдается у Anelosimus — рода пауков, встречающегося по всему миру и включающего множество местных видов. Они относятся к семейству Theridiidae (пауки-тенетнеки), куда входит и черная вдова. У многих из них, как и у их знаменитого сородича, на брюшке есть яркие узоры. Однако семейство еще более примечательно тем, что некоторые его представители создают колонии, где может быть до нескольких тысяч самок, — настоящий кошмар для арахнофоба. Джонатан Прюитт и его коллеги из Питсбургского университета обнаружили, что в колониях пауков Anelosimus studiosus, обитающих в Новом Свете, у самок есть две основные касты, основанные на «личностных» качествах их представителей. Первые агрессивны и занимаются ловлей добычи, строительством паутины и защитой колонии. Вторые относительно миролюбивы и занимаются заботой о потомстве, в том числе защитой больших сферических коконов с яйцами. Агрессивные особи более эффективны при добыче пищи и отражении атак чужаков, а миролюбивые лучше справляются с заботой о многочисленном выводке. «Личностные» различия, по крайней мере частично, определены на генетическом уровне, а два «личностных» типа живут в относительной гармонии.

Колонии Anelosimus studiosus интересны для науки потому, что экспериментаторы могут составлять их с разными сочетаниями каждой из двух каст. При этом, если пауков берут из одной среды и помещают в другую, можно наблюдать за тем, как колонии будут адаптироваться к новым условиям. Таким образом, Прюитт и его коллеги наблюдали возникновение группового отбора. Результаты оказались положительными: в исходном и в новом месте каждая из колоний за два поколения переходила к той пропорции агрессивных и миролюбивых особей, которая изначально наблюдалась в исходном месте обитания.

И наконец, нам многое известно про термитов и их предполагаемых ближайших предков, что дает возможность практически непосредственно наблюдать переход через порог эусоциальности.

Специалисты, как правило, сходятся во мнении о том, что термиты произошли от тараканов. Биологи-эволюционисты более осторожны в формулировках: они обычно говорят, что два близкородственных рода насекомых имеют общего предка. Но в данном случае филогенетическая связь настолько близка, что, полагаю, термитов можно назвать социальными тараканами.

Среди ныне живущих тараканов к термитам наиболее близки представители рода Cryptocercus — древоядные тараканы, обитающие в Северной Америке, на востоке России и западе Китая. Внешне они схожи с шипящими тараканами (род Gromphadorhina) с Мадагаскара, которых часто используют в лабораторных исследованиях, а также в качестве «страшных жуков» в голливудских фильмах.

Cryptocercus довольно крупные тараканы. Они выживают не за счет того, что убегают от врага (как это обычно делают домашние тараканы); они полагаются на пассивную защиту, обеспечиваемую хитиновой броней. У них толстый экзоскелет и щитообразная головогрудь; передвигаются они неспешно, с достоинством ступая увенчанными шипами ногами. Они защищают свои постоянные жилища, устраиваемые в разлагающейся древесине. Кристин Налепа из Государственного университета Северной Каролины недавно опубликовала работу с данными об анатомической и генетической близости представителей рода Cryptocercus и термитов в плане образа жизни и социального поведения. Она пишет о том, что, как и современные термиты, они зависят от специализированных бактерий и других микроорганизмов, живущих в их внутренностях. Эти симбионты перерабатывают древесную целлюлозу и делятся полученными компонентами с насекомым-хозяином. Кроме того, в процессе выращивания потомства и тараканы из рода Cryptocercus, и термиты скармливают переваренную древесину молодняку через анус.

В колониях Cryptocercus, как и в сообществах термитов, принципиальную важность имеет передача бактерий-симбионтов и других микроорганизмов от одного поколения к другому. Сообщества у Cryptocercus — типичные семьи, где родители ухаживают за потомством до достижения полной зрелости, когда последние, в свою очередь, также становятся родителями. У термитов, занимающих одно из важнейших мест в мире насекомых, тоже есть семьи, но совсем иного рода. Большая часть потомства не становится родителями. Вместо этого они развиваются как рабочие особи и помогают своим родителям и другим рабочим. Иными словами, они способствуют росту сообщества. Так и возникает эусоциальность — потенциально наиболее сложный уровень общественной организации, где индивиды объединены необходимостью формировать целостную репродуктивную единицу. Будучи эусоциальными тараканами, термиты перешли с этапа общественной жизни, присущего роду Cryptocercus, формируемого преимущественно за счет индивидуального отбора, на следующий этап и создали сложные сообщества, в основном формируемые за счет группового отбора.

И это приводит нас к серьезному противоречию, которое давно пытается разрешить социобиология. Началось все с мысленного эксперимента, предложенного британским биологом Джоном Холдейном в 1950-х гг.

Этот великий ученый ввел в оборот понятие, позже названное родственным отбором. Мысленный эксперимент состоит в следующем: предположим, вы видите тонущего человека. Если вы попытаетесь его спасти, то подвергнете себя 10%-ному риску случайной гибели. Предположим, что за ваше социальное поведение в данном случае отвечают только гены. Если утопающий для вас — посторонний человек, то его спасение не стоит того, чтобы идти на 10%-ный риск и, соответственно, всех ваших генов. Ваши гены не получат каких-либо преимуществ от такой рискованной операции, даже если вам удастся спасти утопающего. Однако если утопающий — ваш брат, несущий половину ваших генов, то такой риск утраты ваших собственных генов уже имеет смысл. То есть с генетической точки зрения цена риска — это все, что имеет значение в процессе эволюции посредством естественного отбора.

Составив задачу таким образом, Холдейн обнаружил, что родственный отбор может влиять на развитие альтруистического поведения и, следовательно, на появление эусоциальных сообществ, таких как сообщества муравьев или людей, и влияние тем сильнее, чем ближе связь между альтруистом и бенефициаром. Чем ближе родственная связь, тем больше у них общих генов, а следовательно, больше генов может быть передано следующему поколению. Холдейн образно выразил эту идею так: «Я бы отдал жизнь за двух братьев или восьмерых кузенов».

В 1964 г. британский генетик Уильям Гамильтон предположил, что родственный отбор может быть ключевым фактором для возникновения эусоциальных сообществ. Он предложил формулу родственного отбора, демонстрирующую, что такой отбор может способствовать распространению определенного признака, даже если обычный индивидуальный отбор для него неблагоприятен, при условии, что в этом есть выгода (B) для других членов группы, которая повышается с увеличением степени родства (R) и может превосходить цену гибели индивида (С). «Правило Гамильтона» (BR ? C > 0) описывает тот порог, выше которого может развиваться альтруизм.

Столь замечательное выражение сложного процесса социальной эволюции в виде простой формулы привлекает необычайно большое внимание общественности (по крайней мере, до недавнего времени так и было) к «общему правилу Гамильтона» (HRG); его до сих пор изучают в рамках начальных курсов по социобиологии и эволюционной теории. К сожалению, со временем выяснилось, что у этой теории есть пагубные недостатки. Математики и биологи-эволюционисты с математической подготовкой утвердились во мнении, что ее невозможно считать ни корректным, ни даже сколько-нибудь полезным научным утверждением. В 2013 г. в журнале Proceedings of the National Academy of Sciences, USA мы с Мартином А. Новаком, Алексом Макэвоем и Бенджамином Алленом опубликовали статью, где утверждаем следующее:

Математическое исследование HRG позволило выяснить три удивительных факта. Во-первых, HRG не обладает какой-либо предсказательной силой, поскольку и выгоду B, и цену для индивида C невозможно узнать заранее. Они зависят от данных, которые необходимо предсказать. В начале эксперимента B и C неизвестны, а потому нельзя сказать, что именно предсказывает правило Гамильтона. Когда эксперимент будет закончен, HRG даст значения B и C задним числом, так чтобы разность BR ? C была положительной, если частота рассматриваемого признака повысилась, и отрицательной, если она снизилась. Но такие «предсказания» — просто перетасовка собранных данных, в которых уже есть информация о том, повысилась ли частота признака или же снизилась. В частности, параметры B и C зависят от изменения средней частоты признака.
Второй удивительный факт об HRG: прогноз, существующий лишь в ретроспективе, не основывается на близости родственных связей или каком-либо ином аспекте популяционной структуры. Зачастую правило Гамильтона интерпретируется так: R выражает структуру популяции, а B и C характеризуют природу признака. Но существующее отклонение показывает, что такая интерпретация неверна. Все три показателя — B, R и C — это функции от популяционной структуры, тогда как BR ? C — это функция, не зависящая от структуры популяции. Любая информация о том, кто с кем взаимодействует, утрачивается при вычислении значения BR ? C.
Третий факт об HRG: не существует эксперимента, который мог бы подтвердить или опровергнуть это правило. Все входные данные, независимо от того, биологические они или нет, формально согласуются с HRG. Эта согласованность — не следствие естественного отбора, а утверждение о наличии взаимосвязи между углами наклона в многовариантной линейной регрессии. Об этой связи статистической науке известно по крайней мере с 1897 г.

Такая же неопределенность, но еще сильнее выраженная, характерна и для предложенной Гамильтоном концепции «совокупной приспособленности». Правило Гамильтона расширяется попарно, от индивида к индивиду, пока не охватит всех членов колонии, когда можно определить, какую выгоду получает группа в целом от суммы всех взаимодействий. Есть немногочисленная научная школа «теоретиков совокупной приспособленности», которые отстаивают эту идею, но нет каких-либо реальных наблюдений совокупной приспособленности — никому не удалось их представить даже чисто умозрительно.

Я допускаю, что критики теории совокупной приспособленности (к которым отношу и себя) могут ошибаться, и в будущем удастся сделать ее прямые измерения или дать хотя бы косвенную оценку. В таком случае гамильтоновская надстройка к родственному отбору действительно станет важным вкладом в социальную биологию. А пока открытия в области социогенеза придется делать с помощью старых (и значительно более интересных) методов — полевых и лабораторных наблюдений, ведущих к обобщениям, основанным на больших объемах собранных данных.


Источник: m.vk.com

Комментарии: