6 крупных Data Science проектов с открытым исходным кодом |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2020-01-25 01:57 Data Science – это не просто новое модное IT-направление, а наука, которая совсем скоро кардинально изменит наш мир. В статье мы узнаем про 6 крутых проектов в этой сфере. Человек уже не справляется с обработкой многих видов данных, особенно если речь идет о колоссальных объемах, поэтому в дальнейшем без помощи самообучающегося ИИ нам никак не обойтись. JS-библиотека для визуализации данных RoughViz представляет данные в виде картинки, которая выглядит так, будто ее нарисовали от руки. Вот команда для установки RoughViz: npm install rough-viz В репозитории GitHub есть много подробных примеров кода, показывающих, как применять библиотеку. С ее помощью можно сгенерировать линейные графики, гистограмму, кольцевую, круговую и точечную диаграммы. Простой, легкий и быстрый распознаватель лиц Пусть вас не смущает описание на китайском языке – оно прекрасно переводится в Google Translate. Зато эта модель детектора лиц весит всего-навсего 1 Мб! Архитектура, используемая в детекторе, основана на libfacedetection. Библиотека представлена в двух версиях:
С такой легковесной библиотекой очень удобно разрабатывать более сложные и совершенные системы компьютерного зрения. Самая масштабная карта знаний Теории графов используются во многих научных дисциплинах, в том числе в Data Science. Особенный интерес сейчас вызывают еще не приевшиеся тематические карты, диаграммы концептов и ассоциативные карты. Этот проект стал своеобразным гигантом среди таких систем. Он был создан в Китае и представляет собой наибольшую из всех существующих карту знаний: число ее узлов превышает 140 миллионов. Содержимое карты имеет расширение csv. Все данные этого проекта, сгруппированы в тройки моделей вида «Сущность-Атрибут-Значение» и «Сущность-Отношение-Сущность». Простота и размер карты дают уникальную возможность вдоволь поэкспериментировать с разными алгоритмами из теории графов, а также попрактиковаться в обработке огромных объемов данных. Генерация сложных видео по простым моделям Vid2vid превращает семантически простой входной ролик в мегареалистичное выходное видео. Фактически нейросеть переносит отличительные черты одной модели на другую. Чтобы лучше понять, о чем идет речь, посмотрите на несколько наглядных примеров использования этой системы: Сейчас есть два значительных ограничения моделей few-shot vid2vid:
Репозиторий GitHub является реализацией vid2vid с использованием PyTorch. Если вы хотите подробнее узнать о возможностях нейросети, ознакомьтесь с научной статьей по ссылке. Детектор объектов при автономном вождении Автономное управление автомобилями возможно благодаря технологиям обнаружения объектов. И чтобы эта система была безопасной для участников дорожного движения, она обязана работать быстро и выдавать очень точный результат. Архитектура детектора Gaussian YOLOv3 обеспечивает высокую точность обнаружения в режиме реального времени, т.е. соответствует главным требованиям к автопилотам. По сравнению со стандартным YOLOv3, эта версия демонстрирует лучшие значения параметров на датасетах, которые непосредственно связаны с управлением транспортом: KITTI и Berkeley DeepDrive. Преобразователь текста от Google Research Разве может Google не попасть в рейтинг новейших достижений? Конечно же, нет. Компания выделяет впечатляющие суммы на развитие многих разновидностей машинного обучения, в том числе глубокого и с подкреплением. К счастью разработчиков всего мира, иногда Google выпускает open source проекты, и у них можно многому поучиться. Ярким примером подобных решений является Text-to-Text Transfer Transformer или кратко Т5. Идея программы заключается в переносе обучения при обработке естественного человеческого языка. Т5 прекрасно справляется с задачами, которые касаются текста: поиск ответа на вопросы, обобщение, классификация и т.д. Установить преобразователя для Python можно с помощью системы pip: pip install t5[gcp] Источник: itproger.com Комментарии: |
|